These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27976628)

  • 1. Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy.
    Maiti R; Haldar S; Majumdar D; Singha A; Ray SK
    Nanotechnology; 2017 Feb; 28(7):075707. PubMed ID: 27976628
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between metal and graphene: dependence on the layer number of graphene.
    Lee J; Novoselov KS; Shin HS
    ACS Nano; 2011 Jan; 5(1):608-12. PubMed ID: 21174405
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic strain in gold nanoparticle supported graphene induced by focused laser irradiation.
    Pálinkás A; Kun P; Koós AA; Osváth Z
    Nanoscale; 2018 Jul; 10(28):13417-13425. PubMed ID: 29972167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman fingerprint of doping due to metal adsorbates on graphene.
    Iqbal MW; Singh AK; Iqbal MZ; Eom J
    J Phys Condens Matter; 2012 Aug; 24(33):335301. PubMed ID: 22814217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-Step RF-CVD Method for the Synthesis of Graphene Decorated with Metal and Metal Oxide Nanoparticles.
    Ramakrishnan S; Jelmy EJ; Senthilkumar R; Rangarajan M; Kothurkar NK
    J Nanosci Nanotechnol; 2018 Feb; 18(2):1089-1096. PubMed ID: 29448538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The influence of strong electron and hole doping on the Raman intensity of chemical vapor-deposition graphene.
    Kalbac M; Reina-Cecco A; Farhat H; Kong J; Kavan L; Dresselhaus MS
    ACS Nano; 2010 Oct; 4(10):6055-63. PubMed ID: 20931995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic and mechanical response of graphene on BaTiO
    Verhagen T; Vales V; Kalbac M; Vejpravova J
    J Phys Condens Matter; 2018 Feb; 30(8):085001. PubMed ID: 29345243
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Edge oxidation effect of chemical-vapor-deposition-grown graphene nanoconstriction.
    Iqbal MW; Iqbal MZ; Jin X; Hwang C; Eom J
    ACS Appl Mater Interfaces; 2014 Mar; 6(6):4207-13. PubMed ID: 24564734
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure and properties of graphene on gold nanoparticles.
    Osváth Z; Deák A; Kertész K; Molnár G; Vértesy G; Zámbó D; Hwang C; Biró LP
    Nanoscale; 2015 Mar; 7(12):5503-9. PubMed ID: 25735599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface-enhanced Raman scattering of suspended monolayer graphene.
    Huang CW; Lin BJ; Lin HY; Huang CH; Shih FY; Wang WH; Liu CY; Chui HC
    Nanoscale Res Lett; 2013 Nov; 8(1):480. PubMed ID: 24229405
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultraviolet photoconductive devices with an n-GaN nanorod-graphene hybrid structure synthesized by metal-organic chemical vapor deposition.
    Kang S; Mandal A; Chu JH; Park JH; Kwon SY; Lee CR
    Sci Rep; 2015 Jun; 5():10808. PubMed ID: 26028318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ultraviolet-light-driven doping modulation in chemical vapor deposition grown graphene.
    Iqbal MZ; Iqbal MW; Khan MF; Eom J
    Phys Chem Chem Phys; 2015 Aug; 17(32):20551-6. PubMed ID: 26198203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate.
    Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC
    ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modification of the structural and electrical properties of graphene layers by Pt adsorbates.
    Iqbal MW; Iqbal MZ; Khan MF; Jin X; Hwang C; Eom J
    Sci Technol Adv Mater; 2014 Oct; 15(5):055002. PubMed ID: 27877714
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile graphene n-doping by wet chemical treatment for electronic applications.
    Bong JH; Sul O; Yoon A; Choi SY; Cho BJ
    Nanoscale; 2014 Aug; 6(15):8503-8. PubMed ID: 24946832
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gold-Deposited Graphene Nanosheets for Self-Cleaning Graphene Surface-Enhanced Raman Spectroscopy with Superior Charge-Transfer Contribution.
    Verma AK; Singh J; Nguyen-Tri P
    ACS Appl Mater Interfaces; 2024 Feb; 16(8):10969-10983. PubMed ID: 38355426
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Layer number identification of intrinsic and defective multilayered graphenes up to 100 layers by the Raman mode intensity from substrates.
    Li XL; Qiao XF; Han WP; Lu Y; Tan QH; Liu XL; Tan PH
    Nanoscale; 2015 May; 7(17):8135-41. PubMed ID: 25875074
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermi-Level Modulation of Chemical Vapor Deposition-Grown Monolayer Graphene via Nanoparticles to Macromolecular Dopants.
    Singh AK; Singh AK; Sinha SRP
    ACS Omega; 2022 Jan; 7(1):744-751. PubMed ID: 35036740
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the effects of metal nanostructuring and oxidation on the work function and charge transfer of metal/graphene hybrids.
    Giangregorio MM; Jiao W; Bianco GV; Capezzuto P; Brown AS; Bruno G; Losurdo M
    Nanoscale; 2015 Aug; 7(30):12868-77. PubMed ID: 26158222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlling graphene work function by doping in a MOCVD reactor.
    Klein C; Cohen-Elias D; Sarusi G
    Heliyon; 2018 Dec; 4(12):e01030. PubMed ID: 30582048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.