These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 27976687)

  • 1. Manufacture of patient-specific vascular replicas for endovascular simulation using fast, low-cost method.
    Kaneko N; Mashiko T; Ohnishi T; Ohta M; Namba K; Watanabe E; Kawai K
    Sci Rep; 2016 Dec; 6():39168. PubMed ID: 27976687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of low cost soft tissue prostheses with the desktop 3D printer.
    He Y; Xue GH; Fu JZ
    Sci Rep; 2014 Nov; 4():6973. PubMed ID: 25427880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping.
    Mashiko T; Otani K; Kawano R; Konno T; Kaneko N; Ito Y; Watanabe E
    World Neurosurg; 2015 Mar; 83(3):351-61. PubMed ID: 24141000
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Additive Manufacturing of Anatomical Models from Computed Tomography Scan Data.
    Gür Y
    Mol Cell Biomech; 2014 Dec; 11(4):249-58. PubMed ID: 26336695
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low cost silicone renal replicas for surgical training - technical note.
    Smektala T; Goląb A; Królikowski M; Slojewski M
    Arch Esp Urol; 2016 Sep; 69(7):434-6. PubMed ID: 27617553
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The Role of Three-Dimensional Printing in Contemporary Vascular and Endovascular Surgery: A Systematic Review.
    Tam CHA; Chan YC; Law Y; Cheng SWK
    Ann Vasc Surg; 2018 Nov; 53():243-254. PubMed ID: 30053547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D Printed Surgical Simulation Models as educational tool by maxillofacial surgeons.
    Werz SM; Zeichner SJ; Berg BI; Zeilhofer HF; Thieringer F
    Eur J Dent Educ; 2018 Aug; 22(3):e500-e505. PubMed ID: 29479802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and assessment of 3D printed anatomical models of the lower limb for anatomical teaching and femoral vessel access training in medicine.
    O'Reilly MK; Reese S; Herlihy T; Geoghegan T; Cantwell CP; Feeney RN; Jones JF
    Anat Sci Educ; 2016; 9(1):71-9. PubMed ID: 26109268
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Brush-Spin-Coating Method for Fabricating In Vitro Patient-Specific Vascular Models by Coupling 3D-Printing.
    Chi QZ; Mu LZ; He Y; Luan Y; Jing YC
    Cardiovasc Eng Technol; 2021 Apr; 12(2):200-214. PubMed ID: 33263929
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Feasibility of an endovascular training and research environment with exchangeable patient specific 3D printed vascular anatomy: Simulator with exchangeable patient-specific 3D-printed vascular anatomy for endovascular training and research.
    Kaschwich M; Sieren M; Matysiak F; Bouchagiar J; Dell A; Bayer A; Ernst F; Ellebrecht D; Kleemann M; Horn M
    Ann Anat; 2020 Sep; 231():151519. PubMed ID: 32305378
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pediatric laryngeal simulator using 3D printed models: A novel technique.
    Kavanagh KR; Cote V; Tsui Y; Kudernatsch S; Peterson DR; Valdez TA
    Laryngoscope; 2017 Apr; 127(4):E132-E137. PubMed ID: 27730649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimization of 3D Print Material for the Recreation of Patient-Specific Temporal Bone Models.
    Haffner M; Quinn A; Hsieh TY; Strong EB; Steele T
    Ann Otol Rhinol Laryngol; 2018 May; 127(5):338-343. PubMed ID: 29667491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Creation of Patient-Specific Silicone Cardiac Models with Applications in Pre-surgical Plans and Hands-on Training.
    Mattus MS; Ralph TB; Keller SMP; Waltz AL; Bramlet MT
    J Vis Exp; 2022 Feb; (180):. PubMed ID: 35225258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduced surface adsorption in 3D printed acrylonitrile butadiene styrene micro free-flow electrophoresis devices.
    Anciaux SK; Bowser MT
    Electrophoresis; 2020 Feb; 41(3-4):225-234. PubMed ID: 31816114
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An advanced prosthetic manufacturing framework for economic personalised ear prostheses.
    Cruz RLJ; Ross MT; Skewes J; Allenby MC; Powell SK; Woodruff MA
    Sci Rep; 2020 Jul; 10(1):11453. PubMed ID: 32651436
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using 3D printed models for planning and guidance during endovascular intervention: a technical advance.
    Itagaki MW
    Diagn Interv Radiol; 2015; 21(4):338-41. PubMed ID: 26027767
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [The use of CAD/CAM and rapid fabrication technologies in prosthesis and orthotics manufacturing].
    Ciobanu O
    Rev Med Chir Soc Med Nat Iasi; 2012; 116(2):642-8. PubMed ID: 23077967
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On-Site 3D Printing of Functional Custom Mallet Splints for Mars Analogue Crewmembers.
    Wong JY
    Aerosp Med Hum Perform; 2015 Oct; 86(10):911-4. PubMed ID: 26564680
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Pre-surgical simulation of microvascular decompression for hemifacial spasm using 3D-models].
    Mashiko T; Yang Q; Kaneko N; Konno T; Yamaguchi T; Watanabe E
    No Shinkei Geka; 2015 Jan; 43(1):41-9. PubMed ID: 25557098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fabrication of Compliant and Transparent Hollow Cerebral Vascular Phantoms for In Vitro Studies Using 3D Printing and Spin-Dip Coating.
    Bisighini B; Di Giovanni P; Scerrati A; Trovalusci F; Vesco S
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.