These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27976719)

  • 21. Klebsiella pneumoniae nitrogenase. Inhibition of hydrogen evolution by ethylene and the reduction of ethylene to ethane.
    Ashby GA; Dilworth MJ; Thorneley RN
    Biochem J; 1987 Nov; 247(3):547-54. PubMed ID: 3322266
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Azotobacter vinelandii vanadium nitrogenase: formaldehyde is a product of catalyzed HCN reduction, and excess ammonia arises directly from catalyzed azide reduction.
    Fisher K; Dilworth MJ; Newton WE
    Biochemistry; 2006 Apr; 45(13):4190-8. PubMed ID: 16566593
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiation of acetylene-reduction sites by stereoselective proton addition during Azotobacter vinelandii nitrogenase-catalyzed C2D2 reduction.
    Han J; Newton WE
    Biochemistry; 2004 Mar; 43(10):2947-56. PubMed ID: 15005631
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Siderophore production in Azotobacter vinelandii in response to Fe-, Mo- and V-limitation.
    McRose DL; Baars O; Morel FMM; Kraepiel AML
    Environ Microbiol; 2017 Sep; 19(9):3595-3605. PubMed ID: 28703469
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulated expression of the nifM of Azotobacter vinelandii in response to molybdenum and vanadium supplements in Burk's nitrogen-free growth medium.
    Lei S; Pulakat L; Gavini N
    Biochem Biophys Res Commun; 1999 Oct; 264(1):186-90. PubMed ID: 10527862
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fluxomic Analysis Reveals Central Carbon Metabolism Adaptation for Diazotroph Azotobacter vinelandii Ammonium Excretion.
    Wu C; Herold RA; Knoshaug EP; Wang B; Xiong W; Laurens LML
    Sci Rep; 2019 Sep; 9(1):13209. PubMed ID: 31520074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Transcriptional Analysis of an Ammonium-Excreting Strain of Azotobacter vinelandii Deregulated for Nitrogen Fixation.
    Barney BM; Plunkett MH; Natarajan V; Mus F; Knutson CM; Peters JW
    Appl Environ Microbiol; 2017 Oct; 83(20):. PubMed ID: 28802272
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tracing the hydrogen source of hydrocarbons formed by vanadium nitrogenase.
    Lee CC; Hu Y; Ribbe MW
    Angew Chem Int Ed Engl; 2011 Jun; 50(24):5545-7. PubMed ID: 21538750
    [No Abstract]   [Full Text] [Related]  

  • 29. Nitrogenase resurrection and the evolution of a singular enzymatic mechanism.
    Garcia AK; Harris DF; Rivier AJ; Carruthers BM; Pinochet-Barros A; Seefeldt LC; Kaçar B
    Elife; 2023 Feb; 12():. PubMed ID: 36799917
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Activation of CO
    Sickerman NS; Hu Y; Ribbe MW
    Chem Asian J; 2017 Aug; 12(16):1985-1996. PubMed ID: 28544649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reduction of thiocyanate, cyanate, and carbon disulfide by nitrogenase: kinetic characterization and EPR spectroscopic analysis.
    Rasche ME; Seefeldt LC
    Biochemistry; 1997 Jul; 36(28):8574-85. PubMed ID: 9214303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into hydrocarbon formation by nitrogenase cofactor homologs.
    Lee CC; Hu Y; Ribbe MW
    mBio; 2015 Apr; 6(2):. PubMed ID: 25873377
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reduction of cyclic and acyclic diazene derivates by Azotobacter vinelandii nitrogenase: diazirine and trans-dimethyldiazene.
    McKenna CE; Simeonov AM; Eran H; Bravo-Leerabhandh M
    Biochemistry; 1996 Apr; 35(14):4502-14. PubMed ID: 8605200
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Uncoupling binding of substrate CO from turnover by vanadium nitrogenase.
    Lee CC; Fay AW; Weng TC; Krest CM; Hedman B; Hodgson KO; Hu Y; Ribbe MW
    Proc Natl Acad Sci U S A; 2015 Nov; 112(45):13845-9. PubMed ID: 26515097
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Requirement of homocitrate for the transfer of a 49V-labeled precursor of the iron-vanadium cofactor from VnfX to nif-apodinitrogenase.
    Ruttimann-Johnson C; Rangaraj P; Shah VK; Ludden PW
    J Biol Chem; 2001 Feb; 276(6):4522-6. PubMed ID: 11053414
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photo-lability of CO bound to Mo-nitrogenase from Azotobacter vinelandii.
    Maskos Z; Hales BJ
    J Inorg Biochem; 2003 Jan; 93(1-2):11-7. PubMed ID: 12538048
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tuning Electron Flux through Nitrogenase with Methanogen Iron Protein Homologues.
    Hiller CJ; Stiebritz MT; Lee CC; Liedtke J; Hu Y
    Chemistry; 2017 Nov; 23(64):16152-16156. PubMed ID: 28984391
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Ethylene Glycol Quenching of Nitrogenase Catalysis: An Electron Paramagnetic Resonance Spectroscopic Study of Nitrogenase Turnover States and CO Bonding.
    Hales BJ
    Biochemistry; 2015 Jul; 54(27):4208-15. PubMed ID: 26090555
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii.
    Bellenger JP; Wichard T; Kraepiel AM
    Appl Environ Microbiol; 2008 Mar; 74(5):1478-84. PubMed ID: 18192412
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Activation and reduction of carbon dioxide by nitrogenase iron proteins.
    Rebelein JG; Stiebritz MT; Lee CC; Hu Y
    Nat Chem Biol; 2017 Feb; 13(2):147-149. PubMed ID: 27893704
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.