These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27976738)

  • 1. Integrating Information in Biological Ontologies and Molecular Networks to Infer Novel Terms.
    Li L; Yip KY
    Sci Rep; 2016 Dec; 6():39237. PubMed ID: 27976738
    [TBL] [Abstract][Full Text] [Related]  

  • 2. InfAcrOnt: calculating cross-ontology term similarities using information flow by a random walk.
    Cheng L; Jiang Y; Ju H; Sun J; Peng J; Zhou M; Hu Y
    BMC Genomics; 2018 Jan; 19(Suppl 1):919. PubMed ID: 29363423
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Extending gene ontology with gene association networks.
    Peng J; Wang T; Wang J; Wang Y; Chen J
    Bioinformatics; 2016 Apr; 32(8):1185-94. PubMed ID: 26644414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identifying term relations cross different gene ontology categories.
    Peng J; Wang H; Lu J; Hui W; Wang Y; Shang X
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):573. PubMed ID: 29297309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A gene ontology inferred from molecular networks.
    Dutkowski J; Kramer M; Surma MA; Balakrishnan R; Cherry JM; Krogan NJ; Ideker T
    Nat Biotechnol; 2013 Jan; 31(1):38-45. PubMed ID: 23242164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integration of molecular network data reconstructs Gene Ontology.
    Gligorijević V; Janjić V; Pržulj N
    Bioinformatics; 2014 Sep; 30(17):i594-600. PubMed ID: 25161252
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying cross-category relations in gene ontology and constructing genome-specific term association networks.
    Peng J; Chen J; Wang Y
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S15. PubMed ID: 23368677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Data-driven ontologies.
    Costello JC; Schrider D; Gehlhausen J; Dalkilic M
    Pac Symp Biocomput; 2009; ():15-26. PubMed ID: 19213131
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferring gene ontologies from pairwise similarity data.
    Kramer M; Dutkowski J; Yu M; Bafna V; Ideker T
    Bioinformatics; 2014 Jun; 30(12):i34-42. PubMed ID: 24932003
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Information theory applied to the sparse gene ontology annotation network to predict novel gene function.
    Tao Y; Sam L; Li J; Friedman C; Lussier YA
    Bioinformatics; 2007 Jul; 23(13):i529-38. PubMed ID: 17646340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. OAHG: an integrated resource for annotating human genes with multi-level ontologies.
    Cheng L; Sun J; Xu W; Dong L; Hu Y; Zhou M
    Sci Rep; 2016 Oct; 6():34820. PubMed ID: 27703231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interestingness measures and strategies for mining multi-ontology multi-level association rules from gene ontology annotations for the discovery of new GO relationships.
    Manda P; McCarthy F; Bridges SM
    J Biomed Inform; 2013 Oct; 46(5):849-56. PubMed ID: 23850840
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GOASVM: a subcellular location predictor by incorporating term-frequency gene ontology into the general form of Chou's pseudo-amino acid composition.
    Wan S; Mak MW; Kung SY
    J Theor Biol; 2013 Apr; 323():40-8. PubMed ID: 23376577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DDOT: A Swiss Army Knife for Investigating Data-Driven Biological Ontologies.
    Yu MK; Ma J; Ono K; Zheng F; Fong SH; Gary A; Chen J; Demchak B; Pratt D; Ideker T
    Cell Syst; 2019 Mar; 8(3):267-273.e3. PubMed ID: 30878356
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous inference of biological networks of multiple species from genome-wide data and evolutionary information: a semi-supervised approach.
    Kashima H; Yamanishi Y; Kato T; Sugiyama M; Tsuda K
    Bioinformatics; 2009 Nov; 25(22):2962-8. PubMed ID: 19689962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enriching regulatory networks by bootstrap learning using optimised GO-based gene similarity and gene links mined from PubMed abstracts.
    Taylor RC; Sanfilippo A; McDermott JE; Baddeley B; Riensche R; Jensen R; Verhagen M; Pustejovsky J
    Int J Comput Biol Drug Des; 2011; 4(1):56-82. PubMed ID: 21330694
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A drug target slim: using gene ontology and gene ontology annotations to navigate protein-ligand target space in ChEMBL.
    Mutowo P; Bento AP; Dedman N; Gaulton A; Hersey A; Lomax J; Overington JP
    J Biomed Semantics; 2016 Sep; 7(1):59. PubMed ID: 27678076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. AVID: an integrative framework for discovering functional relationships among proteins.
    Jiang T; Keating AE
    BMC Bioinformatics; 2005 Jun; 6():136. PubMed ID: 15929793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discriminating response groups in metabolic and regulatory pathway networks.
    Van Hemert JL; Dickerson JA
    Bioinformatics; 2012 Apr; 28(7):947-54. PubMed ID: 22308149
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Framework for Identifying Genotypic Information from Clinical Records: Exploiting Integrated Ontology Structures to Transfer Annotations between ICD Codes and Gene Ontologies.
    Hashemikhabir S; Xia R; Xiang Y; Janga SC
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(4):1259-1269. PubMed ID: 26394433
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.