These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 27977117)

  • 21. Hydrogenated TiO2 Branches Coated Mn3O4 Nanorods as an Advanced Anode Material for Lithium Ion Batteries.
    Wang N; Yue J; Chen L; Qian Y; Yang J
    ACS Appl Mater Interfaces; 2015 May; 7(19):10348-55. PubMed ID: 25928277
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries.
    Wang H; Cui LF; Yang Y; Sanchez Casalongue H; Robinson JT; Liang Y; Cui Y; Dai H
    J Am Chem Soc; 2010 Oct; 132(40):13978-80. PubMed ID: 20853844
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bamboo leaf derived ultrafine Si nanoparticles and Si/C nanocomposites for high-performance Li-ion battery anodes.
    Wang L; Gao B; Peng C; Peng X; Fu J; Chu PK; Huo K
    Nanoscale; 2015 Sep; 7(33):13840-7. PubMed ID: 26098990
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Rate LiTi2(PO4)3@N-C Composite via Bi-nitrogen Sources Doping.
    Sun D; Xue X; Tang Y; Jing Y; Huang B; Ren Y; Yao Y; Wang H; Cao G
    ACS Appl Mater Interfaces; 2015 Dec; 7(51):28337-45. PubMed ID: 26633580
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Well-ordered mesoporous Fe
    Li M; Ma C; Zhu QC; Xu SM; Wei X; Wu YM; Tang WP; Wang KX; Chen JS
    Dalton Trans; 2017 Apr; 46(15):5025-5032. PubMed ID: 28350408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery.
    Bai Y; Wang Z; Wu C; Xu R; Wu F; Liu Y; Li H; Li Y; Lu J; Amine K
    ACS Appl Mater Interfaces; 2015 Mar; 7(9):5598-604. PubMed ID: 25692826
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanoparticulate Mn3O4/VGCF composite conversion-anode material with extraordinarily high capacity and excellent rate capability for lithium ion batteries.
    Ma F; Yuan A; Xu J
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):18129-38. PubMed ID: 25247688
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cobalt sulfide nanoparticles anchored in three-dimensional carbon nanosheet networks for lithium and sodium ion batteries with enhanced electrochemical performance.
    Zhang X; Wang H; Wang G
    J Colloid Interface Sci; 2017 Apr; 492():41-50. PubMed ID: 28068543
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional SnO2/carbon on Cu foam for high-performance lithium ion battery anodes.
    Chen W; Maloney S; Wang W
    Nanotechnology; 2016 Oct; 27(41):415401. PubMed ID: 27587237
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High electrochemical performance of monodisperse NiCo₂O₂ mesoporous microspheres as an anode material for Li-ion batteries.
    Li J; Xiong S; Liu Y; Ju Z; Qian Y
    ACS Appl Mater Interfaces; 2013 Feb; 5(3):981-8. PubMed ID: 23323836
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Uniform carbon layer coated Mn3O4 nanorod anodes with improved reversible capacity and cyclic stability for lithium ion batteries.
    Wang C; Yin L; Xiang D; Qi Y
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1636-42. PubMed ID: 22394097
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mesoporous TiO₂ spheres interconnected by multiwalled carbon nanotubes as an anode for high-performance lithium ion batteries.
    Trang NT; Ali Z; Kang DJ
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3676-83. PubMed ID: 25633801
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Novel mesoporous Si@C microspheres as anodes for lithium-ion batteries.
    Ma X; Liu M; Gan L; Tripathi PK; Zhao Y; Zhu D; Xu Z; Chen L
    Phys Chem Chem Phys; 2014 Mar; 16(9):4135-42. PubMed ID: 24448656
    [TBL] [Abstract][Full Text] [Related]  

  • 34. MoO2-ordered mesoporous carbon hybrids as anode materials with highly improved rate capability and reversible capacity for lithium-ion battery.
    Chen A; Li C; Tang R; Yin L; Qi Y
    Phys Chem Chem Phys; 2013 Aug; 15(32):13601-10. PubMed ID: 23832242
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mesoporous multi-valence manganese oxides composite nanotubes boosting long-life lithium-ion batteries.
    Zhou J; Feng B; Kong X; Li L; Li Z; Tian X; Feng M; Qu S; Wang J
    Dalton Trans; 2022 Dec; 51(48):18622-18632. PubMed ID: 36448337
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Scalable room-temperature synthesis of mesoporous nanocrystalline ZnMn2O4 with enhanced lithium storage properties for lithium-ion batteries.
    Yuan C; Zhang L; Hou L; Zhou L; Pang G; Lian L
    Chemistry; 2015 Jan; 21(3):1262-8. PubMed ID: 25387890
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hollow Core-Shell SnO2/C Fibers as Highly Stable Anodes for Lithium-Ion Batteries.
    Zhou D; Song WL; Fan LZ
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21472-8. PubMed ID: 26348195
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanotube Li₂MoO₄: a novel and high-capacity material as a lithium-ion battery anode.
    Liu X; Lyu Y; Zhang Z; Li H; Hu YS; Wang Z; Zhao Y; Kuang Q; Dong Y; Liang Z; Fan Q; Chen L
    Nanoscale; 2014 Nov; 6(22):13660-7. PubMed ID: 25274504
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical Sodiation/Desodiation into Mn
    Mahamad Yusoff NF; Idris NH; Md Din MF; Majid SR; Harun NA; Rahman MM
    ACS Omega; 2020 Nov; 5(45):29158-29167. PubMed ID: 33225147
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved Lithium-Ion and Sodium-Ion Storage Properties from Few-Layered WS
    Pang Q; Gao Y; Zhao Y; Ju Y; Qiu H; Wei Y; Liu B; Zou B; Du F; Chen G
    Chemistry; 2017 May; 23(29):7074-7080. PubMed ID: 28374501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.