These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
65 related articles for article (PubMed ID: 27977151)
1. Correction to Bacteria Inactivation via X-ray-Induced UVC Radioluminescence: Toward in Situ Biofouling Prevention in Membrane Modules. Johnson TA; Rehak EA; Sahu SP; Ladner DA; Cates EL Environ Sci Technol; 2017 Jan; 51(1):751. PubMed ID: 27977151 [No Abstract] [Full Text] [Related]
2. Bacteria Inactivation via X-ray-Induced UVC Radioluminescence: Toward in Situ Biofouling Prevention in Membrane Modules. Johnson TA; Rehak EA; Sahu SP; Ladner DA; Cates EL Environ Sci Technol; 2016 Nov; 50(21):11912-11921. PubMed ID: 27740769 [TBL] [Abstract][Full Text] [Related]
3. Biofouling control in water by various UVC wavelengths and doses. Lakretz A; Ron EZ; Mamane H Biofouling; 2010; 26(3):257-67. PubMed ID: 20024789 [TBL] [Abstract][Full Text] [Related]
4. New approaches to characterizing and understanding biofouling of spiral wound membrane systems. van Loosdrecht MC; Bereschenko L; Radu A; Kruithof JC; Picioreanu C; Johns ML; Vrouwenvelder HS Water Sci Technol; 2012; 66(1):88-94. PubMed ID: 22678204 [TBL] [Abstract][Full Text] [Related]
5. Gas Flow to Enhance the Detection of Alpha-Induced Air Radioluminescence Based on a UVTron Flame Sensor. Crompton AJ; Gamage KAA; Bell S; Wilson AP; Jenkins AW; Trivedi D Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874884 [TBL] [Abstract][Full Text] [Related]
6. Biofouling of ultrafiltration membrane by dairy fluids: Characterization of pioneer colonizer bacteria using a DNA metabarcoding approach. Chamberland J; Lessard MH; Doyen A; Labrie S; Pouliot Y J Dairy Sci; 2017 Feb; 100(2):981-990. PubMed ID: 27889129 [TBL] [Abstract][Full Text] [Related]
7. In situ observation of the growth of biofouling layer in osmotic membrane bioreactors by multiple fluorescence labeling and confocal laser scanning microscopy. Yuan B; Wang X; Tang C; Li X; Yu G Water Res; 2015 May; 75():188-200. PubMed ID: 25770441 [TBL] [Abstract][Full Text] [Related]
8. Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Barnes RJ; Low JH; Bandi RR; Tay M; Chua F; Aung T; Fane AG; Kjelleberg S; Rice SA Appl Environ Microbiol; 2015 Apr; 81(7):2515-24. PubMed ID: 25636842 [TBL] [Abstract][Full Text] [Related]
9. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers. Zhao YH; Zhu XY; Wee KH; Bai R J Phys Chem B; 2010 Feb; 114(7):2422-9. PubMed ID: 20121056 [TBL] [Abstract][Full Text] [Related]
10. Amphiphilic thiol functional linker mediated sustainable anti-biofouling ultrafiltration nanocomposite comprising a silver nanoparticles and poly(vinylidene fluoride) membrane. Park SY; Chung JW; Chae YK; Kwak SY ACS Appl Mater Interfaces; 2013 Nov; 5(21):10705-14. PubMed ID: 24144007 [TBL] [Abstract][Full Text] [Related]
11. Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems. Bereschenko LA; Prummel H; Euverink GJ; Stams AJ; van Loosdrecht MC Water Res; 2011 Jan; 45(2):405-16. PubMed ID: 21111441 [TBL] [Abstract][Full Text] [Related]
12. Biofouling characteristics using flow field-flow fractionation: effect of bacteria and membrane properties. Lee E; Shon HK; Cho J Bioresour Technol; 2010 Mar; 101(5):1487-93. PubMed ID: 19735999 [TBL] [Abstract][Full Text] [Related]
13. Bacterial inactivation in water, DNA strand breaking, and membrane damage induced by ultraviolet-assisted titanium dioxide photocatalysis. Kim S; Ghafoor K; Lee J; Feng M; Hong J; Lee DU; Park J Water Res; 2013 Sep; 47(13):4403-11. PubMed ID: 23764591 [TBL] [Abstract][Full Text] [Related]
14. In situ formation of silver nanoparticles on thin-film composite reverse osmosis membranes for biofouling mitigation. Ben-Sasson M; Lu X; Bar-Zeev E; Zodrow KR; Nejati S; Qi G; Giannelis EP; Elimelech M Water Res; 2014 Oct; 62():260-70. PubMed ID: 24963888 [TBL] [Abstract][Full Text] [Related]
15. Developing an antibacterial super-hydrophilic barrier between bacteria and membranes to mitigate the severe impacts of biofouling. Younas H; Fei Y; Shao J; He Y Biofouling; 2016 Oct; 32(9):1089-1102. PubMed ID: 27669899 [TBL] [Abstract][Full Text] [Related]
16. Photo inactivation of virus particles in microfluidic capillary systems. Ren Y; Crump CM; Mackley MM; Li Puma G; Reis NM Biotechnol Bioeng; 2016 Jul; 113(7):1481-92. PubMed ID: 26694540 [TBL] [Abstract][Full Text] [Related]
17. Do biological-based strategies hold promise to biofouling control in MBRs? Malaeb L; Le-Clech P; Vrouwenvelder JS; Ayoub GM; Saikaly PE Water Res; 2013 Oct; 47(15):5447-63. PubMed ID: 23863390 [TBL] [Abstract][Full Text] [Related]
18. A novel scenario for biofouling control of spiral wound membrane systems. Vrouwenvelder JS; Van Loosdrecht MC; Kruithof JC Water Res; 2011 Jul; 45(13):3890-8. PubMed ID: 21592541 [TBL] [Abstract][Full Text] [Related]
19. Use of rhamnolipid biosurfactant for membrane biofouling prevention and cleaning. Kim LH; Jung Y; Kim SJ; Kim CM; Yu HW; Park HD; Kim IS Biofouling; 2015; 31(2):211-20. PubMed ID: 25789851 [TBL] [Abstract][Full Text] [Related]
20. Immobilization of silver in polypropylene membrane for anti-biofouling performance. Zhu X; Tang L; Wee KH; Zhao YH; Bai R Biofouling; 2011 Aug; 27(7):773-86. PubMed ID: 21781019 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]