These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 27977160)
1. Long-Term Nickel Contamination Increases the Occurrence of Antibiotic Resistance Genes in Agricultural Soils. Hu HW; Wang JT; Li J; Shi XZ; Ma YB; Chen D; He JZ Environ Sci Technol; 2017 Jan; 51(2):790-800. PubMed ID: 27977160 [TBL] [Abstract][Full Text] [Related]
2. Short-term copper exposure as a selection pressure for antibiotic resistance and metal resistance in an agricultural soil. Kang W; Zhang YJ; Shi X; He JZ; Hu HW Environ Sci Pollut Res Int; 2018 Oct; 25(29):29314-29324. PubMed ID: 30121762 [TBL] [Abstract][Full Text] [Related]
3. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Hu HW; Wang JT; Li J; Li JJ; Ma YB; Chen D; He JZ Environ Microbiol; 2016 Nov; 18(11):3896-3909. PubMed ID: 27207327 [TBL] [Abstract][Full Text] [Related]
4. Long-term field application of sewage sludge increases the abundance of antibiotic resistance genes in soil. Chen Q; An X; Li H; Su J; Ma Y; Zhu YG Environ Int; 2016; 92-93():1-10. PubMed ID: 27043971 [TBL] [Abstract][Full Text] [Related]
5. Effect of long-term manure slurry application on the occurrence of antibiotic resistance genes in arable purple soil (entisol). Cheng JH; Tang XY; Cui JF Sci Total Environ; 2019 Jan; 647():853-861. PubMed ID: 30096674 [TBL] [Abstract][Full Text] [Related]
6. Evidence for co-selection of antibiotic resistance genes and mobile genetic elements in metal polluted urban soils. Zhao Y; Cocerva T; Cox S; Tardif S; Su JQ; Zhu YG; Brandt KK Sci Total Environ; 2019 Mar; 656():512-520. PubMed ID: 30529954 [TBL] [Abstract][Full Text] [Related]
7. Field-based evidence for enrichment of antibiotic resistance genes and mobile genetic elements in manure-amended vegetable soils. Zhao X; Wang J; Zhu L; Wang J Sci Total Environ; 2019 Mar; 654():906-913. PubMed ID: 30453260 [TBL] [Abstract][Full Text] [Related]
8. Temporal succession of soil antibiotic resistance genes following application of swine, cattle and poultry manures spiked with or without antibiotics. Zhang YJ; Hu HW; Gou M; Wang JT; Chen D; He JZ Environ Pollut; 2017 Dec; 231(Pt 2):1621-1632. PubMed ID: 28964602 [TBL] [Abstract][Full Text] [Related]
9. Influence of Soil Characteristics and Proximity to Antarctic Research Stations on Abundance of Antibiotic Resistance Genes in Soils. Wang F; Stedtfeld RD; Kim OS; Chai B; Yang L; Stedtfeld TM; Hong SG; Kim D; Lim HS; Hashsham SA; Tiedje JM; Sul WJ Environ Sci Technol; 2016 Dec; 50(23):12621-12629. PubMed ID: 27797533 [TBL] [Abstract][Full Text] [Related]
10. Aerobic composting reduces antibiotic resistance genes in cattle manure and the resistome dissemination in agricultural soils. Gou M; Hu HW; Zhang YJ; Wang JT; Hayden H; Tang YQ; He JZ Sci Total Environ; 2018 Jan; 612():1300-1310. PubMed ID: 28898936 [TBL] [Abstract][Full Text] [Related]
11. Application of sewage sludge to agricultural soil increases the abundance of antibiotic resistance genes without altering the composition of prokaryotic communities. Urra J; Alkorta I; Mijangos I; Epelde L; Garbisu C Sci Total Environ; 2019 Jan; 647():1410-1420. PubMed ID: 30180347 [TBL] [Abstract][Full Text] [Related]
12. Heavy metal could drive co-selection of antibiotic resistance in terrestrial subsurface soils. Wang X; Lan B; Fei H; Wang S; Zhu G J Hazard Mater; 2021 Jun; 411():124848. PubMed ID: 33858075 [TBL] [Abstract][Full Text] [Related]
13. Temporal changes of antibiotic-resistance genes and bacterial communities in two contrasting soils treated with cattle manure. Hu HW; Han XM; Shi XZ; Wang JT; Han LL; Chen D; He JZ FEMS Microbiol Ecol; 2016 Feb; 92(2):. PubMed ID: 26712351 [TBL] [Abstract][Full Text] [Related]
14. Long-term application of organic fertilization causes the accumulation of antibiotic resistome in earthworm gut microbiota. Ding J; Zhu D; Hong B; Wang HT; Li G; Ma YB; Tang YT; Chen QL Environ Int; 2019 Mar; 124():145-152. PubMed ID: 30641258 [TBL] [Abstract][Full Text] [Related]
15. Distribution of quinolone and macrolide resistance genes and their co-occurrence with heavy metal resistance genes in vegetable soils with long-term application of manure. Dong Z; Wang J; Wang L; Zhu L; Wang J; Zhao X; Kim YM Environ Geochem Health; 2022 Oct; 44(10):3343-3358. PubMed ID: 34559332 [TBL] [Abstract][Full Text] [Related]
16. Tracking antibiotic resistance genes in microplastic-contaminated soil. Wu C; Song X; Wang D; Ma Y; Ren X; Hu H; Shan Y; Ma X; Cui J; Ma Y Chemosphere; 2023 Jan; 312(Pt 1):137235. PubMed ID: 36375616 [TBL] [Abstract][Full Text] [Related]
17. [Characteristics of Antibiotic Resistance Genes Distribution in Different Types of Agricultural Land Soils in Highly Cultivated Hilly Areas]. Chen R; Cheng JH; Tang XY Huan Jing Ke Xue; 2023 Dec; 44(12):6947-6954. PubMed ID: 38098417 [TBL] [Abstract][Full Text] [Related]
18. Fungicides enhanced the abundance of antibiotic resistance genes in greenhouse soil. Zhang H; Chen S; Zhang Q; Long Z; Yu Y; Fang H Environ Pollut; 2020 Apr; 259():113877. PubMed ID: 31926390 [TBL] [Abstract][Full Text] [Related]
19. Reponses of microbial community and antibiotic resistance genes to the selection pressures of ampicillin, cephalexin and chloramphenicol in activated sludge reactors. Zhao R; Feng J; Huang J; Li X; Li B Sci Total Environ; 2021 Feb; 755(Pt 2):142632. PubMed ID: 33045611 [TBL] [Abstract][Full Text] [Related]
20. [Distribution Characteristics of Antibiotic Resistance Genes and Mobile Genetic Elements in Beijing Vegetable Base Soils]. Zhang RF; Song Y; Gao HZ; Cheng ST; Sun YM; Wang XM Huan Jing Ke Xue; 2020 Jan; 41(1):385-393. PubMed ID: 31854941 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]