These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27977207)

  • 1. Photon-by-Photon Hidden Markov Model Analysis for Microsecond Single-Molecule FRET Kinetics.
    Pirchi M; Tsukanov R; Khamis R; Tomov TE; Berger Y; Khara DC; Volkov H; Haran G; Nir E
    J Phys Chem B; 2016 Dec; 120(51):13065-13075. PubMed ID: 27977207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Method for Extracting the Free Energy Surface and Conformational Dynamics of Fast-Folding Proteins from Single Molecule Photon Trajectories.
    Ramanathan R; Muñoz V
    J Phys Chem B; 2015 Jun; 119(25):7944-56. PubMed ID: 25988351
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering.
    Kim JY; Kim C; Lee NK
    Nat Commun; 2015 Apr; 6():6992. PubMed ID: 25908552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. State transition analysis of spontaneous branch migration of the Holliday junction by photon-based single-molecule fluorescence resonance energy transfer.
    Okamoto K; Sako Y
    Biophys Chem; 2016 Feb; 209():21-7. PubMed ID: 26687325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP).
    Hoffmann A; Nettels D; Clark J; Borgia A; Radford SE; Clarke J; Schuler B
    Phys Chem Chem Phys; 2011 Feb; 13(5):1857-71. PubMed ID: 21218223
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-parameter photon-by-photon hidden Markov modeling.
    Harris PD; Narducci A; Gebhardt C; Cordes T; Weiss S; Lerner E
    Nat Commun; 2022 Feb; 13(1):1000. PubMed ID: 35194038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analyzing conformational dynamics of single P-glycoprotein transporters by Förster resonance energy transfer using hidden Markov models.
    Zarrabi N; Ernst S; Verhalen B; Wilkens S; Börsch M
    Methods; 2014 Mar; 66(2):168-79. PubMed ID: 23891547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of maximum likelihood estimates of a two-state model in single-molecule FRET.
    Gopich IV
    J Chem Phys; 2015 Jan; 142(3):034110. PubMed ID: 25612692
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A linear memory algorithm for Baum-Welch training.
    Miklós I; Meyer IM
    BMC Bioinformatics; 2005 Sep; 6():231. PubMed ID: 16171529
    [TBL] [Abstract][Full Text] [Related]  

  • 10. How fast are the motions of tertiary-structure elements in proteins?
    Haran G; Mazal H
    J Chem Phys; 2020 Oct; 153(13):130902. PubMed ID: 33032421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An instrument for fast acquisition of fluorescence decay curves at picosecond resolution designed for "double kinetics" experiments: application to fluorescence resonance excitation energy transfer study of protein folding.
    Ishay EB; Hazan G; Rahamim G; Amir D; Haas E
    Rev Sci Instrum; 2012 Aug; 83(8):084301. PubMed ID: 22938314
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variational Bayes analysis of a photon-based hidden Markov model for single-molecule FRET trajectories.
    Okamoto K; Sako Y
    Biophys J; 2012 Sep; 103(6):1315-24. PubMed ID: 22995504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mg2+-dependent conformational change of RNA studied by fluorescence correlation and FRET on immobilized single molecules.
    Kim HD; Nienhaus GU; Ha T; Orr JW; Williamson JR; Chu S
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4284-9. PubMed ID: 11929999
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Temperature-cycle single-molecule FRET microscopy on polyprolines.
    Yuan H; Xia T; Schuler B; Orrit M
    Phys Chem Chem Phys; 2011 Feb; 13(5):1762-9. PubMed ID: 21152580
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition Time Determination of Single-Molecule FRET Trajectories via Wasserstein Distance Analysis in Steady-State Variations in smFRET (WAVE).
    Chen T; Gao F; Tan YW
    J Phys Chem B; 2023 Sep; 127(37):7819-7828. PubMed ID: 37672727
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring ultrafast protein folding rates from photon-by-photon analysis of single molecule fluorescence trajectories.
    Chung HS; Cellmer T; Louis JM; Eaton WA
    Chem Phys; 2013 Aug; 422():229-237. PubMed ID: 24443626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule FRET with diffusion and conformational dynamics.
    Gopich IV; Szabo A
    J Phys Chem B; 2007 Nov; 111(44):12925-32. PubMed ID: 17929964
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds.
    Nettels D; Hoffmann A; Schuler B
    J Phys Chem B; 2008 May; 112(19):6137-46. PubMed ID: 18410159
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-Molecule Fluorescence Studies of Fast Protein Folding.
    Wang Z; Campos LA; Muñoz V
    Methods Enzymol; 2016; 581():417-459. PubMed ID: 27793288
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximum likelihood estimation of FRET efficiency and its implications for distortions in pixelwise calculation of FRET in microscopy.
    Nagy P; Szabó A; Váradi T; Kovács T; Batta G; Szöllősi J
    Cytometry A; 2014 Nov; 85(11):942-52. PubMed ID: 25123296
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.