These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27977419)

  • 1. A computational model that predicts behavioral sensitivity to intracortical microstimulation.
    Kim S; Callier T; Bensmaia SJ
    J Neural Eng; 2017 Feb; 14(1):016012. PubMed ID: 27977419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Behavioral assessment of sensitivity to intracortical microstimulation of primate somatosensory cortex.
    Kim S; Callier T; Tabot GA; Gaunt RA; Tenore FV; Bensmaia SJ
    Proc Natl Acad Sci U S A; 2015 Dec; 112(49):15202-7. PubMed ID: 26504211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural mechanisms of the temporal response of cortical neurons to intracortical microstimulation.
    Kumaravelu K; Grill WM
    Brain Stimul; 2024; 17(2):365-381. PubMed ID: 38492885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic amplitude modulation of microstimulation evokes biomimetic onset and offset transients and reduces depression of evoked calcium responses in sensory cortices.
    Hughes C; Kozai T
    Brain Stimul; 2023; 16(3):939-965. PubMed ID: 37244370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity to microstimulation of somatosensory cortex distributed over multiple electrodes.
    Kim S; Callier T; Tabot GA; Tenore FV; Bensmaia SJ
    Front Syst Neurosci; 2015; 9():47. PubMed ID: 25914630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computational modeling of direct neuronal recruitment during intracortical microstimulation in somatosensory cortex.
    Overstreet CK; Klein JD; Helms Tillery SI
    J Neural Eng; 2013 Dec; 10(6):066016. PubMed ID: 24280531
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterizing the short-latency evoked response to intracortical microstimulation across a multi-electrode array.
    Sombeck JT; Heye J; Kumaravelu K; Goetz SM; Peterchev AV; Grill WM; Bensmaia S; Miller LE
    J Neural Eng; 2022 Apr; 19(2):. PubMed ID: 35378515
    [No Abstract]   [Full Text] [Related]  

  • 8. Behavioral paradigm for the evaluation of stimulation-evoked somatosensory perception thresholds in rats.
    Smith TJ; Wu Y; Cheon C; Khan AA; Srinivasan H; Capadona JR; Cogan SF; Pancrazio JJ; Engineer CT; Hernandez-Reynoso AG
    Front Neurosci; 2023; 17():1202258. PubMed ID: 37383105
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neural hijacking: action of high-frequency electrical stimulation on cortical circuits.
    Cheney PD; Griffin DM; Van Acker GM
    Neuroscientist; 2013 Oct; 19(5):434-41. PubMed ID: 22968640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational modeling of pedunculopontine nucleus deep brain stimulation.
    Zitella LM; Mohsenian K; Pahwa M; Gloeckner C; Johnson MD
    J Neural Eng; 2013 Aug; 10(4):045005. PubMed ID: 23723145
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of chronic intracortical microstimulation on neural tissue and fine motor behavior.
    Rajan AT; Boback JL; Dammann JF; Tenore FV; Wester BA; Otto KJ; Gaunt RA; Bensmaia SJ
    J Neural Eng; 2015 Dec; 12(6):066018. PubMed ID: 26479701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Weber's law implies neural discharge more regular than a Poisson process.
    Kang J; Wu J; Smerieri A; Feng J
    Eur J Neurosci; 2010 Mar; 31(6):1006-18. PubMed ID: 20377615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generating spike trains with specified correlation coefficients.
    Macke JH; Berens P; Ecker AS; Tolias AS; Bethge M
    Neural Comput; 2009 Feb; 21(2):397-423. PubMed ID: 19196233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Behavioral Paradigm for the Evaluation of Stimulation-Evoked Somatosensory Perception Thresholds in Rats.
    Smith TJ; Wu Y; Cheon C; Khan AA; Srinivasan H; Capadona JR; Cogan SF; Pancrazio JJ; Engineer CT; Hernandez-Reynoso AG
    bioRxiv; 2023 May; ():. PubMed ID: 37205577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discriminability of Single and Multichannel Intracortical Microstimulation within Somatosensory Cortex.
    Overstreet CK; Hellman RB; Ponce Wong RD; Santos VJ; Helms Tillery SI
    Front Bioeng Biotechnol; 2016; 4():91. PubMed ID: 27995126
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The frequency of cortical microstimulation shapes artificial touch.
    Callier T; Brantly NW; Caravelli A; Bensmaia SJ
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1191-1200. PubMed ID: 31879342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual active touch using randomly patterned intracortical microstimulation.
    O'Doherty JE; Lebedev MA; Li Z; Nicolelis MA
    IEEE Trans Neural Syst Rehabil Eng; 2012 Jan; 20(1):85-93. PubMed ID: 22207642
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationship between neural activation and electric field distribution during deep brain stimulation.
    Astrom M; Diczfalusy E; Martens H; Wardell K
    IEEE Trans Biomed Eng; 2015 Feb; 62(2):664-672. PubMed ID: 25350910
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Creating a neuroprosthesis for active tactile exploration of textures.
    O'Doherty JE; Shokur S; Medina LE; Lebedev MA; Nicolelis MAL
    Proc Natl Acad Sci U S A; 2019 Oct; 116(43):21821-21827. PubMed ID: 31591224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vivo imaging of calcium and glutamate responses to intracortical microstimulation reveals distinct temporal responses of the neuropil and somatic compartments in layer II/III neurons.
    Eles JR; Kozai TDY
    Biomaterials; 2020 Mar; 234():119767. PubMed ID: 31954232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.