These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 27977722)

  • 1. Genome and Proteome Analysis of Rhodococcus erythropolis MI2: Elucidation of the 4,4´-Dithiodibutyric Acid Catabolism.
    Khairy H; Meinert C; Wübbeler JH; Poehlein A; Daniel R; Voigt B; Riedel K; Steinbüchel A
    PLoS One; 2016; 11(12):e0167539. PubMed ID: 27977722
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Biodegradation of the organic disulfide 4,4'-dithiodibutyric acid by Rhodococcus spp.
    Khairy H; Wübbeler JH; Steinbüchel A
    Appl Environ Microbiol; 2015 Dec; 81(24):8294-306. PubMed ID: 26407888
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The NADH:flavin oxidoreductase Nox from Rhodococcus erythropolis MI2 is the key enzyme of 4,4'-dithiodibutyric acid degradation.
    Khairy H; Wübbeler JH; Steinbüchel A
    Lett Appl Microbiol; 2016 Dec; 63(6):434-441. PubMed ID: 27564089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of the xenobiotic organic disulphide 4,4'-dithiodibutyric acid by Rhodococcus erythropolis strain MI2 and comparison with the microbial utilization of 3,3'-dithiodipropionic acid and 3,3'-thiodipropionic acid.
    Wübbeler JH; Bruland N; Wozniczka M; Steinbüchel A
    Microbiology (Reading); 2010 Apr; 156(Pt 4):1221-1233. PubMed ID: 19959574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genome sequence of Rhodococcus erythropolis XP, a biodesulfurizing bacterium with industrial potential.
    Tao F; Zhao P; Li Q; Su F; Yu B; Ma C; Tang H; Tai C; Wu G; Xu P
    J Bacteriol; 2011 Nov; 193(22):6422-3. PubMed ID: 22038975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Analysis of Draft Genome Sequence of Rhodococcus sp. Eu-32 with Other Rhodococcus Species for Its Taxonomic Status and Sulfur Metabolism Potential.
    Akhtar N; Ghauri MA; Akhtar K; Parveen S; Farooq M; Ali A; Schierack P
    Curr Microbiol; 2019 Oct; 76(10):1207-1214. PubMed ID: 31300840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative Genomics and Metabolic Analysis Reveals Peculiar Characteristics of Rhodococcus opacus Strain M213 Particularly for Naphthalene Degradation.
    Pathak A; Chauhan A; Blom J; Indest KJ; Jung CM; Stothard P; Bera G; Green SJ; Ogram A
    PLoS One; 2016; 11(8):e0161032. PubMed ID: 27532207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rhodococcus erythropolis DCL14 contains a novel degradation pathway for limonene.
    van der Werf MJ; Swarts HJ; de Bont JA
    Appl Environ Microbiol; 1999 May; 65(5):2092-102. PubMed ID: 10224006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of a genome-scale metabolic network of Rhodococcus erythropolis for desulfurization studies.
    Aggarwal S; Karimi IA; Lee DY
    Mol Biosyst; 2011 Nov; 7(11):3122-31. PubMed ID: 21912787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core genome and plasmidome of the quorum-quenching bacterium Rhodococcus erythropolis.
    Kwasiborski A; Mondy S; Chong TM; Chan KG; Beury-Cirou A; Faure D
    Genetica; 2015 Apr; 143(2):253-61. PubMed ID: 25676013
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of a second Rhodococcus erythropolis SQ1 3-ketosteroid 9alpha-hydroxylase activity comprising a terminal oxygenase homologue, KshA2, active with oxygenase-reductase component KshB.
    van der Geize R; Hessels GI; Nienhuis-Kuiper M; Dijkhuizen L
    Appl Environ Microbiol; 2008 Dec; 74(23):7197-203. PubMed ID: 18836008
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification and characterization of a tetramethylpyrazine catabolic pathway in Rhodococcus jostii TMP1.
    Kutanovas S; Stankeviciute J; Urbelis G; Tauraite D; Rutkiene R; Meskys R
    Appl Environ Microbiol; 2013 Jun; 79(12):3649-57. PubMed ID: 23563941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insights into the genome of Rhodococcus ruber strain Chol-4.
    Guevara G; Castillo Lopez M; Alonso S; Perera J; Navarro-Llorens JM
    BMC Genomics; 2019 May; 20(1):332. PubMed ID: 31046661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induction and carbon catabolite repression of phenol degradation genes in Rhodococcus erythropolis and Rhodococcus jostii.
    Szőköl J; Rucká L; Šimčíková M; Halada P; Nešvera J; Pátek M
    Appl Microbiol Biotechnol; 2014 Oct; 98(19):8267-79. PubMed ID: 24938209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome and Phenotype Microarray Analyses of Rhodococcus sp. BCP1 and Rhodococcus opacus R7: Genetic Determinants and Metabolic Abilities with Environmental Relevance.
    Orro A; Cappelletti M; D'Ursi P; Milanesi L; Di Canito A; Zampolli J; Collina E; Decorosi F; Viti C; Fedi S; Presentato A; Zannoni D; Di Gennaro P
    PLoS One; 2015; 10(10):e0139467. PubMed ID: 26426997
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1.
    Matsubara T; Ohshiro T; Nishina Y; Izumi Y
    Appl Environ Microbiol; 2001 Mar; 67(3):1179-84. PubMed ID: 11229908
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptome of the quorum-sensing signal-degrading Rhodococcus erythropolis responds differentially to virulent and avirulent Pectobacterium atrosepticum.
    Kwasiborski A; Mondy S; Chong TM; Barbey C; Chan KG; Beury-Cirou A; Latour X; Faure D
    Heredity (Edinb); 2015 May; 114(5):476-84. PubMed ID: 25585922
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular and functional characterization of kshA and kshB, encoding two components of 3-ketosteroid 9alpha-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1.
    van der Geize R; Hessels GI; van Gerwen R; van der Meijden P; Dijkhuizen L
    Mol Microbiol; 2002 Aug; 45(4):1007-18. PubMed ID: 12180920
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic analysis of Rhodococcus erythropolis based on the variation of ribosomal proteins as observed by matrix-assisted laser desorption ionization-mass spectrometry without using genome information.
    Teramoto K; Kitagawa W; Sato H; Torimura M; Tamura T; Tao H
    J Biosci Bioeng; 2009 Oct; 108(4):348-53. PubMed ID: 19716527
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodococcus erythropolis BG43 Genes Mediating Pseudomonas aeruginosa Quinolone Signal Degradation and Virulence Factor Attenuation.
    Müller C; Birmes FS; Rückert C; Kalinowski J; Fetzner S
    Appl Environ Microbiol; 2015 Nov; 81(22):7720-9. PubMed ID: 26319870
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.