These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 27977773)

  • 1. Identification of a Novel Homozygous Nonsense Mutation Confirms the Implication of GNAT1 in Rod-Cone Dystrophy.
    Méjécase C; Laurent-Coriat C; Mayer C; Poch O; Mohand-Saïd S; Prévot C; Antonio A; Boyard F; Condroyer C; Michiels C; Blanchard S; Letexier M; Saraiva JP; Sahel JA; Audo I; Zeitz C
    PLoS One; 2016; 11(12):e0168271. PubMed ID: 27977773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration.
    Carrigan M; Duignan E; Humphries P; Palfi A; Kenna PF; Farrar GJ
    Br J Ophthalmol; 2016 Apr; 100(4):495-500. PubMed ID: 26472407
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coexistence of GNAT1 and ABCA4 variants associated with Nougaret-type congenital stationary night blindness and childhood-onset cone-rod dystrophy.
    Hayashi T; Hosono K; Kurata K; Katagiri S; Mizobuchi K; Ueno S; Kondo M; Nakano T; Hotta Y
    Doc Ophthalmol; 2020 Apr; 140(2):147-157. PubMed ID: 31583501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel nonsense variant in REEP6 is involved in a sporadic rod-cone dystrophy case.
    Méjécase C; Mohand-Saïd S; El Shamieh S; Antonio A; Condroyer C; Blanchard S; Letexier M; Saraiva JP; Sahel JA; Audo I; Zeitz C
    Clin Genet; 2018 Mar; 93(3):707-711. PubMed ID: 29120066
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel homozygous in-frame deletion of
    Kubota D; Oishi N; Gocho K; Kikuchi S; Yamaki K; Igarashi T; Takahashi H; Ishida N; Iwata T; Mizota A; Kameya S
    Ophthalmic Genet; 2019 Oct; 40(5):480-487. PubMed ID: 31696758
    [No Abstract]   [Full Text] [Related]  

  • 6. Biallelic Mutations in GNB3 Cause a Unique Form of Autosomal-Recessive Congenital Stationary Night Blindness.
    Vincent A; Audo I; Tavares E; Maynes JT; Tumber A; Wright T; Li S; Michiels C; ; Condroyer C; MacDonald H; Verdet R; Sahel JA; Hamel CP; Zeitz C; Héon E
    Am J Hum Genet; 2016 May; 98(5):1011-1019. PubMed ID: 27063057
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macular Dystrophy and Cone-Rod Dystrophy Caused by Mutations in the RP1 Gene: Extending the RP1 Disease Spectrum.
    Verbakel SK; van Huet RAC; den Hollander AI; Geerlings MJ; Kersten E; Klevering BJ; Klaver CCW; Plomp AS; Wesseling NL; Bergen AAB; Nikopoulos K; Rivolta C; Ikeda Y; Sonoda KH; Wada Y; Boon CJF; Nakazawa T; Hoyng CB; Nishiguchi KM
    Invest Ophthalmol Vis Sci; 2019 Mar; 60(4):1192-1203. PubMed ID: 30913292
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of Novel Mutations in the LRR-Cap Domain of C21orf2 in Japanese Patients With Retinitis Pigmentosa and Cone-Rod Dystrophy.
    Suga A; Mizota A; Kato M; Kuniyoshi K; Yoshitake K; Sultan W; Yamazaki M; Shimomura Y; Ikeo K; Tsunoda K; Iwata T
    Invest Ophthalmol Vis Sci; 2016 Aug; 57(10):4255-63. PubMed ID: 27548899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Heterozygous Missense Mutation in
    Zeitz C; Méjécase C; Stévenard M; Michiels C; Audo I; Marmor MF
    Biomed Res Int; 2018; 2018():7694801. PubMed ID: 29850563
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retinitis pigmentosa and bilateral cystoid macular oedema in a patient heterozygous for the RIM1 mutation previously associated with cone-rod dystrophy 7.
    Warwick AN; Shawkat F; Lotery AJ
    Ophthalmic Genet; 2017; 38(2):178-182. PubMed ID: 27176872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. p.Gln200Glu, a putative constitutively active mutant of rod alpha-transducin (GNAT1) in autosomal dominant congenital stationary night blindness.
    Szabo V; Kreienkamp HJ; Rosenberg T; Gal A
    Hum Mutat; 2007 Jul; 28(7):741-2. PubMed ID: 17584859
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel variants identified with next-generation sequencing in Polish patients with cone-rod dystrophy.
    Wawrocka A; Skorczyk-Werner A; Wicher K; Niedziela Z; Ploski R; Rydzanicz M; Sykulski M; Kociecki J; Weisschuh N; Kohl S; Biskup S; Wissinger B; Krawczynski MR
    Mol Vis; 2018; 24():326-339. PubMed ID: 29769798
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Next-generation sequencing applied to a large French cone and cone-rod dystrophy cohort: mutation spectrum and new genotype-phenotype correlation.
    Boulanger-Scemama E; El Shamieh S; Démontant V; Condroyer C; Antonio A; Michiels C; Boyard F; Saraiva JP; Letexier M; Souied E; Mohand-Saïd S; Sahel JA; Zeitz C; Audo I
    Orphanet J Rare Dis; 2015 Jun; 10():85. PubMed ID: 26103963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CDHR1 mutations in retinal dystrophies.
    Stingl K; Mayer AK; Llavona P; Mulahasanovic L; Rudolph G; Jacobson SG; Zrenner E; Kohl S; Wissinger B; Weisschuh N
    Sci Rep; 2017 Aug; 7(1):6992. PubMed ID: 28765526
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization of the cone-rod dystrophy retinal phenotype caused by novel homozygous DRAM2 mutations.
    Abad-Morales V; Burés-Jelstrup A; Navarro R; Ruiz-Nogales S; Méndez-Vendrell P; Corcóstegui B; Pomares E
    Exp Eye Res; 2019 Oct; 187():107752. PubMed ID: 31394102
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SPATA7: Evolving phenotype from cone-rod dystrophy to retinitis pigmentosa.
    Matsui R; McGuigan Iii DB; Gruzensky ML; Aleman TS; Schwartz SB; Sumaroka A; Koenekoop RK; Cideciyan AV; Jacobson SG
    Ophthalmic Genet; 2016 Sep; 37(3):333-8. PubMed ID: 26854980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Incomplete penetrance of
    Chapi M; Sabbaghi H; Suri F; Alehabib E; Rahimi-Aliabadi S; Jamali F; Jamshidi J; Emamalizadeh B; Darvish H; Mirrahimi M; Ahmadieh H; Daftarian N
    Ophthalmic Genet; 2019 Jun; 40(3):259-266. PubMed ID: 31215831
    [No Abstract]   [Full Text] [Related]  

  • 18. Clinical and Molecular Characterization of PROM1-Related Retinal Degeneration.
    Cehajic-Kapetanovic J; Birtel J; McClements ME; Shanks ME; Clouston P; Downes SM; Charbel Issa P; MacLaren RE
    JAMA Netw Open; 2019 Jun; 2(6):e195752. PubMed ID: 31199449
    [TBL] [Abstract][Full Text] [Related]  

  • 19. GNAT1 associated with autosomal recessive congenital stationary night blindness.
    Naeem MA; Chavali VR; Ali S; Iqbal M; Riazuddin S; Khan SN; Husnain T; Sieving PA; Ayyagari R; Riazuddin S; Hejtmancik JF; Riazuddin SA
    Invest Ophthalmol Vis Sci; 2012 Mar; 53(3):1353-61. PubMed ID: 22190596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel, homozygous nonsense variant of the CDHR1 gene in a Chinese family causes autosomal recessive retinal dystrophy by NGS-based genetic diagnosis.
    Fu J; Ma L; Cheng J; Yang L; Wei C; Fu S; Lv H; Chen R; Fu J
    J Cell Mol Med; 2018 Nov; 22(11):5662-5669. PubMed ID: 30160356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.