These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 27978995)
1. Precision Medicine with TGF-β Inhibition Using Tumor Explants: Comment on "Patient-Specific Screening Using High-Grade Glioma Explants to Determine Potential Radiosensitization by a TGF-β Small Molecule Inhibitor" by N. Sumru Bayin et al. Huang H; Yu JS Neoplasia; 2016 Dec; 18(12):806-807. PubMed ID: 27978995 [TBL] [Abstract][Full Text] [Related]
2. Patient-Specific Screening Using High-Grade Glioma Explants to Determine Potential Radiosensitization by a TGF-β Small Molecule Inhibitor. Bayin NS; Ma L; Thomas C; Baitalmal R; Sure A; Fansiwala K; Bustoros M; Golfinos JG; Pacione D; Snuderl M; Zagzag D; Barcellos-Hoff MH; Placantonakis D Neoplasia; 2016 Dec; 18(12):795-805. PubMed ID: 27978994 [TBL] [Abstract][Full Text] [Related]
4. SD-208, a novel transforming growth factor beta receptor I kinase inhibitor, inhibits growth and invasiveness and enhances immunogenicity of murine and human glioma cells in vitro and in vivo. Uhl M; Aulwurm S; Wischhusen J; Weiler M; Ma JY; Almirez R; Mangadu R; Liu YW; Platten M; Herrlinger U; Murphy A; Wong DH; Wick W; Higgins LS; Weller M Cancer Res; 2004 Nov; 64(21):7954-61. PubMed ID: 15520202 [TBL] [Abstract][Full Text] [Related]
5. Resistance to growth inhibition by transforming growth factor-beta in malignant glioma cells with functional receptors. Isoe S; Naganuma H; Nakano S; Sasaki A; Satoh E; Nagasaka M; Maeda S; Nukui H J Neurosurg; 1998 Mar; 88(3):529-34. PubMed ID: 9488308 [TBL] [Abstract][Full Text] [Related]
6. Effects of transforming growth factor-β inhibitor on the proliferation of glioma stem/progenitor cell. Zhang Q; Guo W; Di C; Lou M; Li H; Zhao Y Pol J Pathol; 2017; 68(4):312-317. PubMed ID: 29517201 [TBL] [Abstract][Full Text] [Related]
7. An imbalance between Smad and MAPK pathways is responsible for TGF-beta tumor promoting effects in high-grade gliomas. Nickl-Jockschat T; Arslan F; Doerfelt A; Bogdahn U; Bosserhoff A; Hau P Int J Oncol; 2007 Feb; 30(2):499-507. PubMed ID: 17203233 [TBL] [Abstract][Full Text] [Related]
8. Glioma gene therapy with soluble transforming growth factor-beta receptors II and III. Naumann U; Maass P; Gleske AK; Aulwurm S; Weller M; Eisele G Int J Oncol; 2008 Oct; 33(4):759-65. PubMed ID: 18813789 [TBL] [Abstract][Full Text] [Related]
9. Modulation of TGF-beta activity by latent TGF-beta-binding protein 1 in human malignant glioma cells. Tritschler I; Gramatzki D; Capper D; Mittelbronn M; Meyermann R; Saharinen J; Wick W; Keski-Oja J; Weller M Int J Cancer; 2009 Aug; 125(3):530-40. PubMed ID: 19431147 [TBL] [Abstract][Full Text] [Related]
10. Transforming growth factor beta signaling is disabled early in human endometrial carcinogenesis concomitant with loss of growth inhibition. Parekh TV; Gama P; Wen X; Demopoulos R; Munger JS; Carcangiu ML; Reiss M; Gold LI Cancer Res; 2002 May; 62(10):2778-90. PubMed ID: 12019154 [TBL] [Abstract][Full Text] [Related]
11. TGF beta signaling and its role in glioma pathogenesis. Kaminska B; Kocyk M; Kijewska M Adv Exp Med Biol; 2013; 986():171-87. PubMed ID: 22879069 [TBL] [Abstract][Full Text] [Related]
12. P144, a Transforming Growth Factor beta inhibitor peptide, generates antitumoral effects and modifies SMAD7 and SKI levels in human glioblastoma cell lines. Gallo-Oller G; Vollmann-Zwerenz A; Meléndez B; Rey JA; Hau P; Dotor J; Castresana JS Cancer Lett; 2016 Oct; 381(1):67-75. PubMed ID: 27473823 [TBL] [Abstract][Full Text] [Related]
13. Microglia-derived TGF-beta as an important regulator of glioblastoma invasion--an inhibition of TGF-beta-dependent effects by shRNA against human TGF-beta type II receptor. Wesolowska A; Kwiatkowska A; Slomnicki L; Dembinski M; Master A; Sliwa M; Franciszkiewicz K; Chouaib S; Kaminska B Oncogene; 2008 Feb; 27(7):918-30. PubMed ID: 17684491 [TBL] [Abstract][Full Text] [Related]
14. TGF-β as a therapeutic target in high grade gliomas - promises and challenges. Joseph JV; Balasubramaniyan V; Walenkamp A; Kruyt FA Biochem Pharmacol; 2013 Feb; 85(4):478-85. PubMed ID: 23159669 [TBL] [Abstract][Full Text] [Related]
15. Endogenous expression of transforming growth factor beta1 inhibits growth and tumorigenicity and enhances Fas-mediated apoptosis in a murine high-grade glioma model. Ashley DM; Kong FM; Bigner DD; Hale LP Cancer Res; 1998 Jan; 58(2):302-9. PubMed ID: 9443409 [TBL] [Abstract][Full Text] [Related]
16. VEGFR2 expression and TGF-β signaling in initial and recurrent high-grade human glioma. Kuczynski EA; Patten SG; Coomber BL Oncology; 2011; 81(2):126-34. PubMed ID: 21985798 [TBL] [Abstract][Full Text] [Related]
17. The effect of transforming growth factor-beta 2-specific phosphorothioate-anti-sense oligodeoxynucleotides in reversing cellular immunosuppression in malignant glioma. Jachimczak P; Bogdahn U; Schneider J; Behl C; Meixensberger J; Apfel R; Dörries R; Schlingensiepen KH; Brysch W J Neurosurg; 1993 Jun; 78(6):944-51. PubMed ID: 8487077 [TBL] [Abstract][Full Text] [Related]
18. Tenascin-C protein is induced by transforming growth factor-beta1 but does not correlate with time to tumor progression in high-grade gliomas. Hau P; Kunz-Schughart LA; Rümmele P; Arslan F; Dörfelt A; Koch H; Lohmeier A; Hirschmann B; Müller A; Bogdahn U; Bosserhoff AK J Neurooncol; 2006 Mar; 77(1):1-7. PubMed ID: 16292494 [TBL] [Abstract][Full Text] [Related]
19. LRG1 modulates invasion and migration of glioma cell lines through TGF-β signaling pathway. Zhong D; He G; Zhao S; Li J; Lang Y; Ye W; Li Y; Jiang C; Li X Acta Histochem; 2015 Jul; 117(6):551-8. PubMed ID: 26049667 [TBL] [Abstract][Full Text] [Related]
20. Autocrine TGF-beta signaling maintains tumorigenicity of glioma-initiating cells through Sry-related HMG-box factors. Ikushima H; Todo T; Ino Y; Takahashi M; Miyazawa K; Miyazono K Cell Stem Cell; 2009 Nov; 5(5):504-14. PubMed ID: 19896441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]