These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
743 related articles for article (PubMed ID: 27979069)
1. A novel electrochemical sensor based on a molecularly imprinted polymer for the determination of epigallocatechin gallate. Liu Y; Zhu L; Hu Y; Peng X; Du J Food Chem; 2017 Apr; 221():1128-1134. PubMed ID: 27979069 [TBL] [Abstract][Full Text] [Related]
2. A novel molecularly imprinted electrochemical sensor based on graphene quantum dots coated on hollow nickel nanospheres with high sensitivity and selectivity for the rapid determination of bisphenol S. Rao H; Zhao X; Liu X; Zhong J; Zhang Z; Zou P; Jiang Y; Wang X; Wang Y Biosens Bioelectron; 2018 Feb; 100():341-347. PubMed ID: 28942347 [TBL] [Abstract][Full Text] [Related]
3. Molecularly imprinted polymer nanoparticles-based electrochemical sensor for determination of diazinon pesticide in well water and apple fruit samples. Motaharian A; Motaharian F; Abnous K; Hosseini MR; Hassanzadeh-Khayyat M Anal Bioanal Chem; 2016 Sep; 408(24):6769-79. PubMed ID: 27497964 [TBL] [Abstract][Full Text] [Related]
4. A molecularly-imprinted electrochemical sensor based on a graphene-Prussian blue composite-modified glassy carbon electrode for the detection of butylated hydroxyanisole in foodstuffs. Cui M; Liu S; Lian W; Li J; Xu W; Huang J Analyst; 2013 Oct; 138(20):5949-55. PubMed ID: 23938356 [TBL] [Abstract][Full Text] [Related]
5. A new composite of graphene and molecularly imprinted polymer based on ionic liquids as functional monomer and cross-linker for electrochemical sensing 6-benzylaminopurine. Zhu X; Zeng Y; Zhang Z; Yang Y; Zhai Y; Wang H; Liu L; Hu J; Li L Biosens Bioelectron; 2018 Jun; 108():38-45. PubMed ID: 29499557 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical sensing of lactate by using an electrode modified with molecularly imprinted polymers, reduced graphene oxide and gold nanoparticles. Pereira TC; Stradiotto NR Mikrochim Acta; 2019 Nov; 186(12):764. PubMed ID: 31713083 [TBL] [Abstract][Full Text] [Related]
7. Ag/N-doped reduced graphene oxide incorporated with molecularly imprinted polymer: An advanced electrochemical sensing platform for salbutamol determination. Li J; Xu Z; Liu M; Deng P; Tang S; Jiang J; Feng H; Qian D; He L Biosens Bioelectron; 2017 Apr; 90():210-216. PubMed ID: 27898378 [TBL] [Abstract][Full Text] [Related]
8. Sensitive and selective electrochemical determination of quinoxaline-2-carboxylic acid based on bilayer of novel poly(pyrrole) functional composite using one-step electro-polymerization and molecularly imprinted poly(o-phenylenediamine). Yang Y; Fang G; Wang X; Pan M; Qian H; Liu H; Wang S Anal Chim Acta; 2014 Jan; 806():136-43. PubMed ID: 24331049 [TBL] [Abstract][Full Text] [Related]
9. Sensitive detection of L-5-hydroxytryptophan based on molecularly imprinted polymers with graphene amplification. Chen L; Lian HT; Sun XY; Liu B Anal Biochem; 2017 Jun; 526():58-65. PubMed ID: 28327452 [TBL] [Abstract][Full Text] [Related]
10. A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Li Y; Zhang L; Dang Y; Chen Z; Zhang R; Li Y; Ye BC Biosens Bioelectron; 2019 Feb; 127():207-214. PubMed ID: 30611108 [TBL] [Abstract][Full Text] [Related]
11. Determination of methimazole based on electropolymerized-molecularly imprinted polypyrrole modified pencil graphite sensor. Nezhadali A; Mehri L; Shadmehri R Mater Sci Eng C Mater Biol Appl; 2018 Apr; 85():225-232. PubMed ID: 29407151 [TBL] [Abstract][Full Text] [Related]
12. Acetylsalicylic acid electrochemical sensor based on PATP-AuNPs modified molecularly imprinted polymer film. Wang Z; Li H; Chen J; Xue Z; Wu B; Lu X Talanta; 2011 Sep; 85(3):1672-9. PubMed ID: 21807238 [TBL] [Abstract][Full Text] [Related]
13. D-mannitol sensor based on molecularly imprinted polymer on electrode modified with reduced graphene oxide decorated with gold nanoparticles. Beluomini MA; da Silva JL; Sedenho GC; Stradiotto NR Talanta; 2017 Apr; 165():231-239. PubMed ID: 28153247 [TBL] [Abstract][Full Text] [Related]
14. CuCo Wang Y; Yao L; Liu X; Cheng J; Liu W; Liu T; Sun M; Zhao L; Ding F; Lu Z; Zou P; Wang X; Zhao Q; Rao H Biosens Bioelectron; 2019 Oct; 142():111483. PubMed ID: 31279173 [TBL] [Abstract][Full Text] [Related]
15. Highly selective and sensitive sensor based on an organic electrochemical transistor for the detection of ascorbic acid. Zhang L; Wang G; Wu D; Xiong C; Zheng L; Ding Y; Lu H; Zhang G; Qiu L Biosens Bioelectron; 2018 Feb; 100():235-241. PubMed ID: 28923558 [TBL] [Abstract][Full Text] [Related]
16. A highly-sensitive VB Zhang Z; Xu J; Wen Y; Wang T Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():77-87. PubMed ID: 30184806 [TBL] [Abstract][Full Text] [Related]
17. Development of molecularly imprinted electrochemical sensor with reduced graphene oxide and titanium dioxide enhanced performance for the detection of toltrazuril in chicken muscle and egg. Huang X; Wei S; Yao S; Zhang H; He C; Cao J J Pharm Biomed Anal; 2019 Feb; 164():607-614. PubMed ID: 30469110 [TBL] [Abstract][Full Text] [Related]
18. Electrochemical sensor based on gold nanoparticles fabricated molecularly imprinted polymer film at chitosan-platinum nanoparticles/graphene-gold nanoparticles double nanocomposites modified electrode for detection of erythromycin. Lian W; Liu S; Yu J; Xing X; Li J; Cui M; Huang J Biosens Bioelectron; 2012; 38(1):163-9. PubMed ID: 22683249 [TBL] [Abstract][Full Text] [Related]