These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Determination of emerging nitrogenous economic adulterants in milk proteins by high-performance liquid chromatography/compact mass spectrometry. Draher J; Ehling S; Cellar N; Reddy T; Henion J; Sousou N Rapid Commun Mass Spectrom; 2016 Jun; 30(11):1265-72. PubMed ID: 27173108 [TBL] [Abstract][Full Text] [Related]
3. Rapid detection of economic adulterants in fresh milk by liquid chromatography-tandem mass spectrometry. Abernethy G; Higgs K J Chromatogr A; 2013 May; 1288():10-20. PubMed ID: 23540766 [TBL] [Abstract][Full Text] [Related]
4. Evaluating the effects of the adulterants in milk using direct-infusion high-resolution mass spectrometry. Guerreiro TM; de Oliveira DN; Melo CFOR; de Oliveira Lima E; Ribeiro MDS; Catharino RR Food Res Int; 2018 Jun; 108():498-504. PubMed ID: 29735085 [TBL] [Abstract][Full Text] [Related]
5. Monitoring the adulteration of milk with melamine: a visualised sensor array approach. Yang L; Huo D; Jiang Y; Hou C; Zhang S Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2013; 30(5):786-95. PubMed ID: 23768006 [TBL] [Abstract][Full Text] [Related]
6. Adverse child health impacts resulting from food adulterations in the Greater China Region. Li WC; Chow CF J Sci Food Agric; 2017 Sep; 97(12):3897-3916. PubMed ID: 28466508 [TBL] [Abstract][Full Text] [Related]
7. [Determination of melamine in milk powder and milk by high performance liquid chromatography]. He Q; Liu M; Huang L; Yang Y; Liao S Se Pu; 2008 Nov; 26(6):752-4. PubMed ID: 19253558 [TBL] [Abstract][Full Text] [Related]
8. Determination of melamine in milk-based products and other food and beverage products by ion-pair liquid chromatography-tandem mass spectrometry. Ibáñez M; Sancho JV; Hernández F Anal Chim Acta; 2009 Sep; 649(1):91-7. PubMed ID: 19664467 [TBL] [Abstract][Full Text] [Related]
9. Variance of Commercial Powdered Milks Analyzed by Proton Nuclear Magnetic Resonance and Impact on Detection of Adulterants. Harnly J; Bergana MM; Adams KM; Xie Z; Moore JC J Agric Food Chem; 2018 Aug; 66(32):8478-8488. PubMed ID: 29697263 [TBL] [Abstract][Full Text] [Related]
10. Effective detection and quantification of chemical adulterants in model fat-filled milk powders using NIRS and hierarchical modelling strategies. Kene Ejeahalaka K; On SLW Food Chem; 2020 Mar; 309():125785. PubMed ID: 31732247 [TBL] [Abstract][Full Text] [Related]
11. Simultaneous determination of urea and melamine in milk powder by nonlinear chemical fingerprint technique. Ma Y; Dong W; Bao H; Fang Y; Fan C Food Chem; 2017 Apr; 221():898-906. PubMed ID: 27979291 [TBL] [Abstract][Full Text] [Related]
12. Melamine contamination. Tyan YC; Yang MH; Jong SB; Wang CK; Shiea J Anal Bioanal Chem; 2009 Oct; 395(3):729-35. PubMed ID: 19669733 [TBL] [Abstract][Full Text] [Related]
13. Is it possible to screen for milk or whey protein adulteration with melamine, urea and ammonium sulphate, combining Kjeldahl and classical spectrophotometric methods? Finete Vde L; Gouvêa MM; Marques FF; Netto AD Food Chem; 2013 Dec; 141(4):3649-55. PubMed ID: 23993532 [TBL] [Abstract][Full Text] [Related]
14. A fast and environmental friendly analytical procedure for determination of melamine in milk exploiting fluorescence quenching. Nascimento CF; Rocha DL; Rocha FR Food Chem; 2015 Feb; 169():314-9. PubMed ID: 25236232 [TBL] [Abstract][Full Text] [Related]
15. Rapid detection of melamine adulteration in dairy milk by SB-ATR-Fourier transform infrared spectroscopy. Jawaid S; Talpur FN; Sherazi ST; Nizamani SM; Khaskheli AA Food Chem; 2013 Dec; 141(3):3066-71. PubMed ID: 23871060 [TBL] [Abstract][Full Text] [Related]
16. Effects of the Adulteration Technique on the Near-Infrared Detection of Melamine in Milk Powder. Scholl PF; Bergana MM; Yakes BJ; Xie Z; Zbylut S; Downey G; Mossoba M; Jablonski J; Magaletta R; Holroyd SE; Buehler M; Qin J; Hurst W; LaPointe JH; Roberts D; Zrybko C; Mackey A; Holton JD; Israelson GA; Payne A; Kim MS; Chao K; Moore JC J Agric Food Chem; 2017 Jul; 65(28):5799-5809. PubMed ID: 28617599 [TBL] [Abstract][Full Text] [Related]
17. Determination of melamine in milk by fluorescence spectroscopy and second-order calibration. Barreto MC; Braga RG; Lemos SG; Fragoso WD Food Chem; 2021 Dec; 364():130407. PubMed ID: 34182362 [TBL] [Abstract][Full Text] [Related]
18. Non-targeted detection of milk powder adulteration using Raman spectroscopy and chemometrics: melamine case study. Karunathilaka SR; Farris S; Mossoba MM; Moore JC; Yakes BJ Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2017 Feb; 34(2):170-182. PubMed ID: 27841972 [TBL] [Abstract][Full Text] [Related]
19. Simultaneous determination of melamine and 5-hydroxymethylfurfural in milk by capillary electrophoresis with diode array detection. Chen Z; Yan X J Agric Food Chem; 2009 Oct; 57(19):8742-7. PubMed ID: 19761188 [TBL] [Abstract][Full Text] [Related]
20. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) method extension to quantify simultaneously melamine and cyanuric acid in egg powder and soy protein in addition to milk products. Rodriguez Mondal AM; Desmarchelier A; Konings E; Acheson-Shalom R; Delatour T J Agric Food Chem; 2010 Nov; 58(22):11574-9. PubMed ID: 21038852 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]