These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
206 related articles for article (PubMed ID: 27979145)
1. Loading of anthocyanins on chitosan nanoparticles influences anthocyanin degradation in gastrointestinal fluids and stability in a beverage. He B; Ge J; Yue P; Yue X; Fu R; Liang J; Gao X Food Chem; 2017 Apr; 221():1671-1677. PubMed ID: 27979145 [TBL] [Abstract][Full Text] [Related]
2. Nanocomplexes composed of chitosan derivatives and β-Lactoglobulin as a carrier for anthocyanins: Preparation, stability and bioavailability in vitro. Ge J; Yue X; Wang S; Chi J; Liang J; Sun Y; Gao X; Yue P Food Res Int; 2019 Feb; 116():336-345. PubMed ID: 30716954 [TBL] [Abstract][Full Text] [Related]
3. Nanocomplexes derived from chitosan and whey protein isolate enhance the thermal stability and slow the release of anthocyanins in simulated digestion and prepared instant coffee. Wang S; Ye X; Sun Y; Liang J; Yue P; Gao X Food Chem; 2021 Jan; 336():127707. PubMed ID: 32763737 [TBL] [Abstract][Full Text] [Related]
4. Chitosan-coated nanoliposome: An approach for simultaneous encapsulation of caffeine and roselle-anthocyanin in beverages. Javadi B; Farahmand A; Soltani-Gorde-Faramarzi S; Hesarinejad MA Int J Biol Macromol; 2024 Aug; 275(Pt 1):133469. PubMed ID: 38945345 [TBL] [Abstract][Full Text] [Related]
5. Nanoencapsulation in low-molecular-weight chitosan improves in vivo antioxidant potential of black carrot anthocyanin. Chatterjee NS; Dara PK; Perumcherry Raman S; Vijayan DK; Sadasivam J; Mathew S; Ravishankar CN; Anandan R J Sci Food Agric; 2021 Sep; 101(12):5264-5271. PubMed ID: 33646598 [TBL] [Abstract][Full Text] [Related]
6. Preparation and in vitro/in vivo evaluation of resveratrol-loaded carboxymethyl chitosan nanoparticles. Zu Y; Zhang Y; Wang W; Zhao X; Han X; Wang K; Ge Y Drug Deliv; 2016; 23(3):981-91. PubMed ID: 24918466 [TBL] [Abstract][Full Text] [Related]
7. Optimization of size and encapsulation efficiency of 5-FU loaded chitosan nanoparticles by response surface methodology. Honary S; Ebrahimi P; Hadianamrei R Curr Drug Deliv; 2013 Dec; 10(6):742-52. PubMed ID: 24274636 [TBL] [Abstract][Full Text] [Related]
8. Application of Box-Behnken experimental design for the formulation and optimisation of selenomethionine-loaded chitosan nanoparticles coated with zein for oral delivery. Vozza G; Danish M; Byrne HJ; Frías JM; Ryan SM Int J Pharm; 2018 Nov; 551(1-2):257-269. PubMed ID: 30153488 [TBL] [Abstract][Full Text] [Related]
9. Implementation of two different experimental designs for screening and optimization of process parameters for metformin-loaded carboxymethyl chitosan formulation. De A; Kuppuswamy G; Jaiswal A Drug Dev Ind Pharm; 2019 Nov; 45(11):1821-1834. PubMed ID: 31486683 [TBL] [Abstract][Full Text] [Related]
10. Enhanced stability of stilbene-glycoside-loaded nanoparticles coated with carboxymethyl chitosan and chitosan hydrochloride. Liu S; Yang Q; Zhang J; Yang M; Wang Y; Sun T; Ma C; Abd El-Aty AM Food Chem; 2022 Mar; 372():131343. PubMed ID: 34656910 [TBL] [Abstract][Full Text] [Related]
11. Chitosan nanoparticle as protein delivery carrier--systematic examination of fabrication conditions for efficient loading and release. Gan Q; Wang T Colloids Surf B Biointerfaces; 2007 Sep; 59(1):24-34. PubMed ID: 17555948 [TBL] [Abstract][Full Text] [Related]
12. Anthocyanin Encapsulated Nanoparticles as a Pulmonary Delivery System. Amararathna M; Hoskin DW; Rupasinghe HPV Oxid Med Cell Longev; 2022; 2022():1422929. PubMed ID: 36124088 [TBL] [Abstract][Full Text] [Related]
13. Optimization of particle size and encapsulation efficiency of vancomycin nanoparticles by response surface methodology. Honary S; Ebrahimi P; Hadianamrei R Pharm Dev Technol; 2014 Dec; 19(8):987-98. PubMed ID: 24147898 [TBL] [Abstract][Full Text] [Related]
14. Synthesis, structural characterization, and evaluation of cyanidin-3-O-glucoside-loaded chitosan nanoparticles. Sun J; Chen J; Mei Z; Luo Z; Ding L; Jiang X; Bai W Food Chem; 2020 Nov; 330():127239. PubMed ID: 32540522 [TBL] [Abstract][Full Text] [Related]
15. Optimizing indomethacin-loaded chitosan nanoparticle size, encapsulation, and release using Box-Behnken experimental design. Abul Kalam M; Khan AA; Khan S; Almalik A; Alshamsan A Int J Biol Macromol; 2016 Jun; 87():329-40. PubMed ID: 26893052 [TBL] [Abstract][Full Text] [Related]
16. Screening of novel RGD peptides to modify nanoparticles for targeted cancer therapy. Ge L; You X; Huang K; Kang Y; Chen Y; Zhu Y; Ren Y; Zhang Y; Wu J; Qian H Biomater Sci; 2017 Dec; 6(1):125-135. PubMed ID: 29142995 [TBL] [Abstract][Full Text] [Related]
17. Comparison in docetaxel-loaded nanoparticles based on three different carboxymethyl chitosans. Zhang E; Xing R; Liu S; Li K; Qin Y; Yu H; Li P Int J Biol Macromol; 2017 Aug; 101():1012-1018. PubMed ID: 28389400 [TBL] [Abstract][Full Text] [Related]
18. Properties and stability of blueberry anthocyanin--bovine serum albumin nanoparticles. Chen J; Tao X; Zhang M; Sun A; Zhao L J Sci Food Agric; 2014 Jul; 94(9):1781-6. PubMed ID: 24302118 [TBL] [Abstract][Full Text] [Related]
19. Enhanced physicochemical stability and efficacy of angiotensin I-converting enzyme (ACE) - inhibitory biopeptides by chitosan nanoparticles optimized using Box-Behnken design. Auwal SM; Zarei M; Tan CP; Basri M; Saari N Sci Rep; 2018 Jul; 8(1):10411. PubMed ID: 29991723 [TBL] [Abstract][Full Text] [Related]
20. Preparation of N,O-carboxymethyl chitosan nanoparticles as an insulin carrier. Lin CC; Lin CW Drug Deliv; 2009 Nov; 16(8):458-64. PubMed ID: 19839790 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]