BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 27979178)

  • 61. Characterization and biological function of milk-derived miRNAs.
    Golan-Gerstl R; Elbaum Shiff Y; Moshayoff V; Schecter D; Leshkowitz D; Reif S
    Mol Nutr Food Res; 2017 Oct; 61(10):. PubMed ID: 28643865
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Identification and quantification of inhibitors for Angiotensin-converting enzyme in hypoallergenic infant milk formulas.
    Martin M; Wellner A; Ossowski I; Henle T
    J Agric Food Chem; 2008 Aug; 56(15):6333-8. PubMed ID: 18593178
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Comparison of Molecular Species Distribution of DHA-Containing Triacylglycerols in Milk and Different Infant Formulas by Liquid Chromatography-Mass Spectrometry.
    Liu Z; Cocks BG; Rochfort S
    J Agric Food Chem; 2016 Mar; 64(10):2134-44. PubMed ID: 26902881
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Beta-palmitate - a natural component of human milk in supplemental milk formulas.
    Havlicekova Z; Jesenak M; Banovcin P; Kuchta M
    Nutr J; 2016 Mar; 15():28. PubMed ID: 26987690
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Caco-2 accumulation of lutein is greater from human milk than from infant formula despite similar bioaccessibility.
    Lipkie TE; Banavara D; Shah B; Morrow AL; McMahon RJ; Jouni ZE; Ferruzzi MG
    Mol Nutr Food Res; 2014 Oct; 58(10):2014-22. PubMed ID: 24975441
    [TBL] [Abstract][Full Text] [Related]  

  • 66. The application of lactoferrin in infant formula: The past, present and future.
    Li W; Liu B; Lin Y; Xue P; Lu Y; Song S; Li Y; Szeto IM; Ren F; Guo H
    Crit Rev Food Sci Nutr; 2024; 64(17):5748-5767. PubMed ID: 36533432
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Personalizing nutrient intakes of formula-fed infants: breast milk as a model.
    Lönnerdal B
    Nestle Nutr Workshop Ser Pediatr Program; 2008; 62():189-98; discussion 198-203. PubMed ID: 18626201
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Concentrations of Nepsilon-carboxymethyllysine in human breast milk, infant formulas, and urine of infants.
    Dittrich R; Hoffmann I; Stahl P; Müller A; Beckmann MW; Pischetsrieder M
    J Agric Food Chem; 2006 Sep; 54(18):6924-8. PubMed ID: 16939359
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Recombinant human milk proteins.
    Lönnerdal B
    Nestle Nutr Workshop Ser Pediatr Program; 2006; 58():207-15; discussion 215-7. PubMed ID: 16902336
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Novel trends and challenges in fat modification of next-generation infant formula: Considering the structure of milk fat globules to improve lipid digestion and metabolism of infants.
    Ma Q; Zhang X; Li X; Liu L; Liu S; Hao D; Bora AFM; Kouame KJE; Xu Y; Liu W; Li J
    Food Res Int; 2023 Dec; 174(Pt 1):113574. PubMed ID: 37986523
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [L-carnitine in infant formulas].
    Sorokin P
    Vopr Pitan; 2011; 80(6):82-3. PubMed ID: 22379871
    [No Abstract]   [Full Text] [Related]  

  • 72. Comparative Analysis of Protein Digestion Characteristics in Human, Cow, Goat, Sheep, Mare, and Camel Milk under Simulated Infant Condition.
    Xiao T; Zeng J; Zhao C; Hou Y; Wu T; Deng Z; Zheng L
    J Agric Food Chem; 2023 Oct; 71(41):15035-15047. PubMed ID: 37801409
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Induction of cytochrome P450 1A by cow milk-based formula: a comparative study between human milk and formula.
    Xu H; Rajesan R; Harper P; Kim RB; Lonnerdal B; Yang M; Uematsu S; Hutson J; Watson-MacDonell J; Ito S
    Br J Pharmacol; 2005 Sep; 146(2):296-305. PubMed ID: 15997229
    [TBL] [Abstract][Full Text] [Related]  

  • 74. In vitro gastric digestion of an experimental infant formula containing both intact and hydrolyzed milk proteins.
    Lambers TT; Wissing J; Roggekamp J
    J Dairy Sci; 2023 Jul; 106(7):4524-4532. PubMed ID: 37225578
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Differences in fat digestion from milk of different Species: In vitro gastrointestinal digestion model for infants.
    Liu B; Liang YH; He YZ; Ye W; Deng ZY; Li J; Guo S
    Food Res Int; 2023 Dec; 174(Pt 1):113571. PubMed ID: 37986442
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Infant formulas with increased concentrations of alpha-lactalbumin.
    Lien EL
    Am J Clin Nutr; 2003 Jun; 77(6):1555S-1558S. PubMed ID: 12812154
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Direct inlet negative ion chemical ionization tandem mass spectrometric analysis of triacylglycerol regioisomers in human milk and infant formulas.
    Fabritius M; Linderborg KM; Tarvainen M; Kalpio M; Zhang Y; Yang B
    Food Chem; 2020 Oct; 328():126991. PubMed ID: 32512466
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Effect of milk protein composition of a model infant formula on the physicochemical properties of in vivo gastric digestates.
    Tari NR; Fan MZ; Archbold T; Kristo E; Guri A; Arranz E; Corredig M
    J Dairy Sci; 2018 Apr; 101(4):2851-2861. PubMed ID: 29402390
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Perchlorate exposure from infant formula and comparisons with the perchlorate reference dose.
    Schier JG; Wolkin AF; Valentin-Blasini L; Belson MG; Kieszak SM; Rubin CS; Blount BC
    J Expo Sci Environ Epidemiol; 2010 May; 20(3):281-7. PubMed ID: 19293845
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Comparison of anti-pathogenic activities of the human and bovine milk N-glycome: Fucosylation is a key factor.
    Wang WL; Wang W; Du YM; Wu H; Yu XB; Ye KP; Li CB; Jung YS; Qian YJ; Voglmeir J; Liu L
    Food Chem; 2017 Nov; 235():167-174. PubMed ID: 28554622
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.