BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

508 related articles for article (PubMed ID: 27979700)

  • 1. Phenol-degrading anode biofilm with high coulombic efficiency in graphite electrodes microbial fuel cell.
    Zhang D; Li Z; Zhang C; Zhou X; Xiao Z; Awata T; Katayama A
    J Biosci Bioeng; 2017 Mar; 123(3):364-369. PubMed ID: 27979700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous power generation and microbial community structure of the anode biofilms in a three-stage microbial fuel cell system.
    Chung K; Okabe S
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):965-77. PubMed ID: 19404637
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Electroactive and Anaerobic Ammonium-Oxidizing (Anammox) Biofilms from Digestate in Microbial Fuel Cells.
    Di Domenico EG; Petroni G; Mancini D; Geri A; Di Palma L; Ascenzioni F
    Biomed Res Int; 2015; 2015():351014. PubMed ID: 26273609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphite anode surface modification with controlled reduction of specific aryl diazonium salts for improved microbial fuel cells power output.
    Picot M; Lapinsonnière L; Rothballer M; Barrière F
    Biosens Bioelectron; 2011 Oct; 28(1):181-8. PubMed ID: 21803564
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micro-oxygen bioanode: An efficient strategy for enhancement of phenol degradation and current generation in mix-cultured MFCs.
    Yang LH; Zhu TT; Cai WW; Haider MR; Wang HC; Cheng HY; Wang AJ
    Bioresour Technol; 2018 Nov; 268():176-182. PubMed ID: 30077174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microbially reduced graphene oxide shows efficient electricity ecovery from artificial dialysis wastewater.
    Goto Y; Yoshida N
    J Gen Appl Microbiol; 2017 Jul; 63(3):165-171. PubMed ID: 28484115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of electrode reduction activities of Geobacter sulfurreducens and an enriched consortium in an air-cathode microbial fuel cell.
    Ishii S; Watanabe K; Yabuki S; Logan BE; Sekiguchi Y
    Appl Environ Microbiol; 2008 Dec; 74(23):7348-55. PubMed ID: 18836002
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of anode potentials on selection of Geobacter strains in microbial electrolysis cells.
    Commault AS; Lear G; Packer MA; Weld RJ
    Bioresour Technol; 2013 Jul; 139():226-34. PubMed ID: 23665518
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improved fuel cell and electrode designs for producing electricity from microbial degradation.
    Park DH; Zeikus JG
    Biotechnol Bioeng; 2003 Feb; 81(3):348-55. PubMed ID: 12474258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Response of the microbial community structure of biofilms to ferric iron in microbial fuel cells.
    Liu Q; Yang Y; Mei X; Liu B; Chen C; Xing D
    Sci Total Environ; 2018 Aug; 631-632():695-701. PubMed ID: 29539598
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial diversity and population dynamics of activated sludge microbial communities participating in electricity generation in microbial fuel cells.
    Ki D; Park J; Lee J; Yoo K
    Water Sci Technol; 2008; 58(11):2195-201. PubMed ID: 19092196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparison of anode bacterial communities and performance in microbial fuel cells with different electron donors.
    Jung S; Regan JM
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):393-402. PubMed ID: 17786426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Time-course correlation of biofilm properties and electrochemical performance in single-chamber microbial fuel cells.
    Ren Z; Ramasamy RP; Cloud-Owen SR; Yan H; Mench MM; Regan JM
    Bioresour Technol; 2011 Jan; 102(1):416-21. PubMed ID: 20591659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial communities adapted to higher external resistance can reduce the onset potential of anode in microbial fuel cells.
    Suzuki K; Kato Y; Yui A; Yamamoto S; Ando S; Rubaba O; Tashiro Y; Futamata H
    J Biosci Bioeng; 2018 May; 125(5):565-571. PubMed ID: 29373307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of inoculum and anode surface properties on the selection of Geobacter-dominated biofilms.
    Commault AS; Barrière F; Lapinsonnière L; Lear G; Bouvier S; Weld RJ
    Bioresour Technol; 2015 Nov; 195():265-72. PubMed ID: 26166461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power output and columbic efficiencies from biofilms of Geobacter sulfurreducens comparable to mixed community microbial fuel cells.
    Nevin KP; Richter H; Covalla SF; Johnson JP; Woodard TL; Orloff AL; Jia H; Zhang M; Lovley DR
    Environ Microbiol; 2008 Oct; 10(10):2505-14. PubMed ID: 18564184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harvesting electricity with Geobacter bremensis isolated from compost.
    Nercessian O; Parot S; Délia ML; Bergel A; Achouak W
    PLoS One; 2012; 7(3):e34216. PubMed ID: 22470538
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition.
    Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of formation of biofilms and chemical scale on the cathode electrode on the performance of a continuous two-chamber microbial fuel cell.
    Chung K; Fujiki I; Okabe S
    Bioresour Technol; 2011 Jan; 102(1):355-60. PubMed ID: 20923722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced graphene oxide and biofilms as cathode catalysts to enhance energy and metal recovery in microbial fuel cell.
    Wu Y; Wang L; Jin M; Kong F; Qi H; Nan J
    Bioresour Technol; 2019 Jul; 283():129-137. PubMed ID: 30901585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.