BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

426 related articles for article (PubMed ID: 27979982)

  • 1. Role of calpain in eccentric contraction-induced proteolysis of Ca
    Kanzaki K; Watanabe D; Kuratani M; Yamada T; Matsunaga S; Wada M
    J Appl Physiol (1985); 2017 Feb; 122(2):396-405. PubMed ID: 27979982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. l-arginine ingestion inhibits eccentric contraction-induced proteolysis and force deficit via S-nitrosylation of calpain.
    Kanzaki K; Watanabe D; Aibara C; Kawakami Y; Yamada T; Takahashi Y; Wada M
    Physiol Rep; 2018 Jan; 6(2):. PubMed ID: 29368397
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ryanodine receptors mediate high intracellular Ca
    Tabuchi A; Tanaka Y; Takagi R; Shirakawa H; Shibaguchi T; Sugiura T; Poole DC; Kano Y
    Am J Physiol Regul Integr Comp Physiol; 2022 Jan; 322(1):R14-R27. PubMed ID: 34755549
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dissociation of SH3 and cysteine-rich domain 3 and junctophilin 1 from dihydropyridine receptor in dystrophin-deficient muscles.
    Ashida Y; Himori K; Tokuda N; Naito A; Yamauchi N; Takenaka-Ninagawa N; Aoki Y; Sakurai H; Yamada T
    Am J Physiol Cell Physiol; 2022 Sep; 323(3):C885-C895. PubMed ID: 35912995
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ingestion of soy protein isolate attenuates eccentric contraction-induced force depression and muscle proteolysis via inhibition of calpain-1 activation in rat fast-twitch skeletal muscle.
    Kanzaki K; Watanabe D; Aibara C; Kawakami Y; Yamada T; Takahashi Y; Wada M
    Nutrition; 2019 Feb; 58():23-29. PubMed ID: 30273822
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Physical interaction of junctophilin and the Ca
    Nakada T; Kashihara T; Komatsu M; Kojima K; Takeshita T; Yamada M
    Proc Natl Acad Sci U S A; 2018 Apr; 115(17):4507-4512. PubMed ID: 29632175
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three calpain isoforms are autolyzed in rat fast-twitch muscle after eccentric contractions.
    Kanzaki K; Kuratani M; Matsunaga S; Yanaka N; Wada M
    J Muscle Res Cell Motil; 2014 Apr; 35(2):179-89. PubMed ID: 24557809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Orthograde signal of dihydropyridine receptor increases Ca
    Watanabe D; Wada M
    Am J Physiol Cell Physiol; 2021 May; 320(5):C806-C821. PubMed ID: 33596151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sarcoplasmic reticulum Ca2+ release in rat slow- and fast-twitch muscles.
    Delbono O; Meissner G
    J Membr Biol; 1996 May; 151(2):123-30. PubMed ID: 8661500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Junctophilin 1 and 2 proteins interact with the L-type Ca2+ channel dihydropyridine receptors (DHPRs) in skeletal muscle.
    Golini L; Chouabe C; Berthier C; Cusimano V; Fornaro M; Bonvallet R; Formoso L; Giacomello E; Jacquemond V; Sorrentino V
    J Biol Chem; 2011 Dec; 286(51):43717-43725. PubMed ID: 22020936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ratio of dihydropyridine to ryanodine receptors in mammalian and frog twitch muscles in relation to the mechanical hypothesis of excitation-contraction coupling.
    Margreth A; Damiani E; Tobaldin G
    Biochem Biophys Res Commun; 1993 Dec; 197(3):1303-11. PubMed ID: 8280147
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preconditioning contractions prevent prolonged force depression and Ca
    Ashida Y; Himori K; Tamai K; Kimura I; Yamada T
    J Appl Physiol (1985); 2021 Nov; 131(5):1399-1407. PubMed ID: 34590910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tetanic contraction induces enhancement of fatigability and sarcomeric damage in atrophic skeletal muscle and its underlying molecular mechanisms.
    Yu ZB
    Zhongguo Ying Yong Sheng Li Xue Za Zhi; 2013 Nov; 29(6):525-33. PubMed ID: 24654535
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of impaired myofibril and ryanodine receptor function to prolonged low-frequency force depression after in situ stimulation in rat skeletal muscle.
    Watanabe D; Kanzaki K; Kuratani M; Matsunaga S; Yanaka N; Wada M
    J Muscle Res Cell Motil; 2015 Jun; 36(3):275-86. PubMed ID: 25697123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Triad formation: organization and function of the sarcoplasmic reticulum calcium release channel and triadin in normal and dysgenic muscle in vitro.
    Flucher BE; Andrews SB; Fleischer S; Marks AR; Caswell A; Powell JA
    J Cell Biol; 1993 Dec; 123(5):1161-74. PubMed ID: 8245124
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Age-related abnormalities in regulation of the ryanodine receptor in rat fast-twitch muscle.
    Damiani E; Larsson L; Margreth A
    Cell Calcium; 1996 Jan; 19(1):15-27. PubMed ID: 8653753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sarcoplasmic reticulum Ca2+ uptake and leak properties, and SERCA isoform expression, in type I and type II fibres of human skeletal muscle.
    Lamboley CR; Murphy RM; McKenna MJ; Lamb GD
    J Physiol; 2014 Mar; 592(6):1381-95. PubMed ID: 24469076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular properties of excitation-contraction coupling proteins in infant and adult human heart tissues.
    Jung DH; Lee CJ; Suh CK; You HJ; Kim DH
    Mol Cells; 2005 Aug; 20(1):51-6. PubMed ID: 16258241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphology and molecular composition of sarcoplasmic reticulum surface junctions in the absence of DHPR and RyR in mouse skeletal muscle.
    Felder E; Protasi F; Hirsch R; Franzini-Armstrong C; Allen PD
    Biophys J; 2002 Jun; 82(6):3144-9. PubMed ID: 12023238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ratio of ryanodine to dihydropyridine receptors in cardiac and skeletal muscle and implications for E-C coupling.
    Bers DM; Stiffel VM
    Am J Physiol; 1993 Jun; 264(6 Pt 1):C1587-93. PubMed ID: 8333507
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.