These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 27980121)

  • 41. Structures of perfringolysin O suggest a pathway for activation of cholesterol-dependent cytolysins.
    Rossjohn J; Polekhina G; Feil SC; Morton CJ; Tweten RK; Parker MW
    J Mol Biol; 2007 Apr; 367(5):1227-36. PubMed ID: 17328912
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Repurposing a pore: highly conserved perforin-like proteins with alternative mechanisms.
    Ni T; Gilbert RJC
    Philos Trans R Soc Lond B Biol Sci; 2017 Aug; 372(1726):. PubMed ID: 28630152
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector.
    Bayly-Jones C; Pang SS; Spicer BA; Whisstock JC; Dunstone MA
    Front Immunol; 2020; 11():581906. PubMed ID: 33178209
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neutron reflection study of the interaction of the eukaryotic pore-forming actinoporin equinatoxin II with lipid membranes reveals intermediate states in pore formation.
    Wacklin HP; Bremec BB; Moulin M; Rojko N; Haertlein M; Forsyth T; Anderluh G; Norton RS
    Biochim Biophys Acta; 2016 Apr; 1858(4):640-52. PubMed ID: 26706098
    [TBL] [Abstract][Full Text] [Related]  

  • 45. What planar lipid membranes tell us about the pore-forming activity of cholesterol-dependent cytolysins.
    Marchioretto M; Podobnik M; Dalla Serra M; Anderluh G
    Biophys Chem; 2013 Dec; 182():64-70. PubMed ID: 23876488
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Membrane pore formation at protein-lipid interfaces.
    Gilbert RJ; Dalla Serra M; Froelich CJ; Wallace MI; Anderluh G
    Trends Biochem Sci; 2014 Nov; 39(11):510-6. PubMed ID: 25440714
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Capturing pore-forming intermediates of MACPF and binary toxin assemblies by cryoEM.
    Couves EC; Bubeck D
    Curr Opin Struct Biol; 2022 Aug; 75():102401. PubMed ID: 35700576
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human perforin employs different avenues to damage membranes.
    Praper T; Sonnen A; Viero G; Kladnik A; Froelich CJ; Anderluh G; Dalla Serra M; Gilbert RJ
    J Biol Chem; 2011 Jan; 286(4):2946-55. PubMed ID: 20889983
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Expression and bioactivity of recombinant segments of human perforin.
    Dong H; Xu X; Deng M; Yu X; Zhao H; Song H; Geng Y
    Biochem Cell Biol; 2007 Apr; 85(2):203-8. PubMed ID: 17534401
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Analysis of Perforin Assembly by Quartz Crystal Microbalance Reveals a Role for Cholesterol and Calcium-independent Membrane Binding.
    Stewart SE; Bird CH; Tabor RF; D'Angelo ME; Piantavigna S; Whisstock JC; Trapani JA; Martin LL; Bird PI
    J Biol Chem; 2015 Dec; 290(52):31101-12. PubMed ID: 26542805
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Membrane cholesterol and sphingomyelin, and ostreolysin A are obligatory for pore-formation by a MACPF/CDC-like pore-forming protein, pleurotolysin B.
    Ota K; Leonardi A; Mikelj M; Skočaj M; Wohlschlager T; Künzler M; Aebi M; Narat M; Križaj I; Anderluh G; Sepčić K; Maček P
    Biochimie; 2013 Oct; 95(10):1855-64. PubMed ID: 23806422
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Revisiting the membrane interaction mechanism of a membrane-damaging β-barrel pore-forming toxin Vibrio cholerae cytolysin.
    Rai AK; Chattopadhyay K
    Mol Microbiol; 2015 Sep; 97(6):1051-62. PubMed ID: 26059432
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fluorescence imaging of MACPF/CDC proteins: new techniques and their application.
    Senior MJ; Wallace MI
    Subcell Biochem; 2014; 80():293-319. PubMed ID: 24798018
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The cholesterol-dependent cytolysin family of gram-positive bacterial toxins.
    Heuck AP; Moe PC; Johnson BB
    Subcell Biochem; 2010; 51():551-77. PubMed ID: 20213558
    [TBL] [Abstract][Full Text] [Related]  

  • 55. MACPF/CDC proteins in development: Insights from Drosophila torso-like.
    Johnson TK; Henstridge MA; Warr CG
    Semin Cell Dev Biol; 2017 Dec; 72():163-170. PubMed ID: 28506893
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Structure and activity of the N-terminal region of the eukaryotic cytolysin equinatoxin II.
    Drechsler A; Potrich C; Sabo JK; Frisanco M; Guella G; Dalla Serra M; Anderluh G; Separovic F; Norton RS
    Biochemistry; 2006 Feb; 45(6):1818-28. PubMed ID: 16460028
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Membrane-insertion fragments of Bcl-xL, Bax, and Bid.
    García-Sáez AJ; Mingarro I; Pérez-Payá E; Salgado J
    Biochemistry; 2004 Aug; 43(34):10930-43. PubMed ID: 15323553
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Disulfide-bond scanning reveals assembly state and β-strand tilt angle of the PFO β-barrel.
    Sato TK; Tweten RK; Johnson AE
    Nat Chem Biol; 2013 Jun; 9(6):383-9. PubMed ID: 23563525
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity.
    Shewell LK; Harvey RM; Higgins MA; Day CJ; Hartley-Tassell LE; Chen AY; Gillen CM; James DB; Alonzo F; Torres VJ; Walker MJ; Paton AW; Paton JC; Jennings MP
    Proc Natl Acad Sci U S A; 2014 Dec; 111(49):E5312-20. PubMed ID: 25422425
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Oligomerization and hemolytic properties of the C-terminal domain of pyolysin, a cholesterol-dependent cytolysin.
    Pokrajac L; Harris JR; Sarraf N; Palmer M
    Biochem Cell Biol; 2013 Apr; 91(2):59-66. PubMed ID: 23527633
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.