These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 27980206)

  • 1. Large gem diamonds from metallic liquid in Earth's deep mantle.
    Smith EM; Shirey SB; Nestola F; Bullock ES; Wang J; Richardson SH; Wang W
    Science; 2016 Dec; 354(6318):1403-1405. PubMed ID: 27980206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The lithospheric-to-lower-mantle carbon cycle recorded in superdeep diamonds.
    Regier ME; Pearson DG; Stachel T; Luth RW; Stern RA; Harris JW
    Nature; 2020 Sep; 585(7824):234-238. PubMed ID: 32908266
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Formation of diamond in the Earth's mantle.
    Stachel T; Harris JW
    J Phys Condens Matter; 2009 Sep; 21(36):364206. PubMed ID: 21832312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heavy iron in large gem diamonds traces deep subduction of serpentinized ocean floor.
    Smith EM; Ni P; Shirey SB; Richardson SH; Wang W; Shahar A
    Sci Adv; 2021 Mar; 7(14):. PubMed ID: 33789901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Key new pieces of the HIMU puzzle from olivines and diamond inclusions.
    Weiss Y; Class C; Goldstein SL; Hanyu T
    Nature; 2016 Sep; 537(7622):666-670. PubMed ID: 27595333
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Blue boron-bearing diamonds from Earth's lower mantle.
    Smith EM; Shirey SB; Richardson SH; Nestola F; Bullock ES; Wang J; Wang W
    Nature; 2018 Aug; 560(7716):84-87. PubMed ID: 30068951
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Primary carbonatite melt from deeply subducted oceanic crust.
    Walter MJ; Bulanova GP; Armstrong LS; Keshav S; Blundy JD; Gudfinnsson G; Lord OT; Lennie AR; Clark SM; Smith CB; Gobbo L
    Nature; 2008 Jul; 454(7204):622-5. PubMed ID: 18668105
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep mantle cycling of oceanic crust: evidence from diamonds and their mineral inclusions.
    Walter MJ; Kohn SC; Araujo D; Bulanova GP; Smith CB; Gaillou E; Wang J; Steele A; Shirey SB
    Science; 2011 Oct; 334(6052):54-7. PubMed ID: 21921159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of an oxidized majorite inclusion from Earth's deep asthenosphere.
    Xu C; Kynický J; Tao R; Liu X; Zhang L; Pohanka M; Song W; Fei Y
    Sci Adv; 2017 Apr; 3(4):e1601589. PubMed ID: 28435871
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A viable mechanism to form boron-bearing diamonds in deep Earth.
    Liu S; Lu W; Zhang X; Song J; Lü J; Liu X; Wang Y; Chen C; Ma Y
    Sci Bull (Beijing); 2023 Jul; 68(13):1456-1461. PubMed ID: 37353437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Diamond formation in an electric field under deep Earth conditions.
    Palyanov YN; Borzdov YM; Sokol AG; Bataleva YV; Kupriyanov IN; Reutsky VN; Wiedenbeck M; Sobolev NV
    Sci Adv; 2021 Jan; 7(4):. PubMed ID: 33523914
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spin crossover and iron-rich silicate melt in the Earth's deep mantle.
    Nomura R; Ozawa H; Tateno S; Hirose K; Hernlund J; Muto S; Ishii H; Hiraoka N
    Nature; 2011 May; 473(7346):199-202. PubMed ID: 21516105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The oxidation state of the mantle and the extraction of carbon from Earth's interior.
    Stagno V; Ojwang DO; McCammon CA; Frost DJ
    Nature; 2013 Jan; 493(7430):84-8. PubMed ID: 23282365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The growth of lithospheric diamonds.
    Bureau H; Remusat L; Esteve I; Pinti DL; Cartigny P
    Sci Adv; 2018 Jun; 4(6):eaat1602. PubMed ID: 29881779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Archaean and Proterozoic diamond growth from contrasting styles of large-scale magmatism.
    Koornneef JM; Gress MU; Chinn IL; Jelsma HA; Harris JW; Davies GR
    Nat Commun; 2017 Sep; 8(1):648. PubMed ID: 28935863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metallic iron limits silicate hydration in Earth's transition zone.
    Zhu F; Li J; Liu J; Dong J; Liu Z
    Proc Natl Acad Sci U S A; 2019 Nov; 116(45):22526-22530. PubMed ID: 31636209
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Xenon isotopic constraints on the history of volatile recycling into the mantle.
    Parai R; Mukhopadhyay S
    Nature; 2018 Aug; 560(7717):223-227. PubMed ID: 30089920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Density of hydrous silicate melt at the conditions of Earth's deep upper mantle.
    Matsukage KN; Jing Z; Karato S
    Nature; 2005 Nov; 438(7067):488-91. PubMed ID: 16306990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CaSiO
    Nestola F; Korolev N; Kopylova M; Rotiroti N; Pearson DG; Pamato MG; Alvaro M; Peruzzo L; Gurney JJ; Moore AE; Davidson J
    Nature; 2018 Mar; 555(7695):237-241. PubMed ID: 29516998
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Origins of ultralow velocity zones through slab-derived metallic melt.
    Liu J; Li J; Hrubiak R; Smith JS
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5547-51. PubMed ID: 27143719
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.