These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 27980240)

  • 21. Centromere-targeted de novo integrations of an LTR retrotransposon of Arabidopsis lyrata.
    Tsukahara S; Kawabe A; Kobayashi A; Ito T; Aizu T; Shin-i T; Toyoda A; Fujiyama A; Tarutani Y; Kakutani T
    Genes Dev; 2012 Apr; 26(7):705-13. PubMed ID: 22431508
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Specific suppression of long terminal repeat retrotransposon mobilization in plants.
    Brestovitsky A; Iwasaki M; Cho J; Adulyanukosol N; Paszkowski J; Catoni M
    Plant Physiol; 2023 Apr; 191(4):2245-2255. PubMed ID: 36583226
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Regulatory mechanism of a heat-activated retrotransposon by DDR complex in
    Niu X; Chen L; Kato A; Ito H
    Front Plant Sci; 2022; 13():1048957. PubMed ID: 36618621
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison.
    Du J; Tian Z; Hans CS; Laten HM; Cannon SB; Jackson SA; Shoemaker RC; Ma J
    Plant J; 2010 Aug; 63(4):584-98. PubMed ID: 20525006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A small RNA mediated regulation of a stress-activated retrotransposon and the tissue specific transposition during the reproductive period in Arabidopsis.
    Matsunaga W; Ohama N; Tanabe N; Masuta Y; Masuda S; Mitani N; Yamaguchi-Shinozaki K; Ma JF; Kato A; Ito H
    Front Plant Sci; 2015; 6():48. PubMed ID: 25709612
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genomic impact of stress-induced transposable element mobility in Arabidopsis.
    Roquis D; Robertson M; Yu L; Thieme M; Julkowska M; Bucher E
    Nucleic Acids Res; 2021 Oct; 49(18):10431-10447. PubMed ID: 34551439
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.
    Gao L; McCarthy EM; Ganko EW; McDonald JF
    BMC Genomics; 2004 Mar; 5(1):18. PubMed ID: 15040813
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Retrotransposons represent the most labile fraction for genomic rearrangements in polyploid plant species.
    Bento M; Tomás D; Viegas W; Silva M
    Cytogenet Genome Res; 2013; 140(2-4):286-94. PubMed ID: 23899810
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cytological variations and long terminal repeat (LTR) retrotransposon diversities among diploids and B-chromosome aneuploids in Lilium amabile Palibin.
    Lee SI; Nguyen TX; Kim JH; Kim NS
    Genes Genomics; 2019 Aug; 41(8):941-950. PubMed ID: 31054075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Natural variation in a subtelomeric region of Arabidopsis: implications for the genomic dynamics of a chromosome end.
    Kuo HF; Olsen KM; Richards EJ
    Genetics; 2006 May; 173(1):401-17. PubMed ID: 16547105
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Interactions among genomic structure, function, and evolution revealed by comprehensive analysis of the Arabidopsis thaliana genome.
    Wu C; Wang S; Zhang HB
    Genomics; 2006 Oct; 88(4):394-406. PubMed ID: 16806804
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Epigenetic regulation of ecotype-specific expression of the heat-activated transposon
    Nozawa K; Masuda S; Saze H; Ikeda Y; Suzuki T; Takagi H; Tanaka K; Ohama N; Niu X; Kato A; Ito H
    Front Plant Sci; 2022; 13():899105. PubMed ID: 35923888
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genomic localization of AtRE1 and AtRE2, copia-type retrotransposons, in natural variants of Arabidopsis thaliana.
    Yamada M; Yamagishi Y; Akaoka M; Ito H; Kato A
    Mol Genet Genomics; 2014 Oct; 289(5):821-35. PubMed ID: 24770782
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The sunflower (Helianthus annuus L.) genome reflects a recent history of biased accumulation of transposable elements.
    Staton SE; Bakken BH; Blackman BK; Chapman MA; Kane NC; Tang S; Ungerer MC; Knapp SJ; Rieseberg LH; Burke JM
    Plant J; 2012 Oct; 72(1):142-53. PubMed ID: 22691070
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copy number variation shapes genome diversity in Arabidopsis over immediate family generational scales.
    DeBolt S
    Genome Biol Evol; 2010 Jul; 2():441-53. PubMed ID: 20624746
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The Sinbad retrotransposon from the genome of the human blood fluke, Schistosoma mansoni, and the distribution of related Pao-like elements.
    Copeland CS; Mann VH; Morales ME; Kalinna BH; Brindley PJ
    BMC Evol Biol; 2005 Feb; 5():20. PubMed ID: 15725362
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy.
    Choi HI; Waminal NE; Park HM; Kim NH; Choi BS; Park M; Choi D; Lim YP; Kwon SJ; Park BS; Kim HH; Yang TJ
    Plant J; 2014 Mar; 77(6):906-16. PubMed ID: 24456463
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of centromeric regions on the linkage map of cotton using centromere-related repeats.
    Zhang W; Cao Y; Wang K; Zhao T; Chen J; Pan M; Wang Q; Feng S; Guo W; Zhou B; Zhang T
    Genomics; 2014 Dec; 104(6 Pt B):587-93. PubMed ID: 25238895
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of retrotransposon activity in plants.
    Defraia C; Slotkin RK
    Methods Mol Biol; 2014; 1112():195-210. PubMed ID: 24478016
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Template switching can create complex LTR retrotransposon insertions in Triticeae genomes.
    Sabot F; Schulman AH
    BMC Genomics; 2007 Jul; 8():247. PubMed ID: 17650302
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.