BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27980672)

  • 1. Systematic engineering of pentose phosphate pathway improves
    Tan Z; Chen J; Zhang X
    Biotechnol Biofuels; 2016; 9():262. PubMed ID: 27980672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli.
    Zhu X; Tan Z; Xu H; Chen J; Tang J; Zhang X
    Metab Eng; 2014 Jul; 24():87-96. PubMed ID: 24831708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-yield anaerobic succinate production by strategically regulating multiple metabolic pathways based on stoichiometric maximum in Escherichia coli.
    Meng J; Wang B; Liu D; Chen T; Wang Z; Zhao X
    Microb Cell Fact; 2016 Aug; 15(1):141. PubMed ID: 27520031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-production of hydrogen and ethanol from glucose in
    Sundara Sekar B; Seol E; Park S
    Biotechnol Biofuels; 2017; 10():85. PubMed ID: 28360941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disruption of the Oxidative Pentose Phosphate Pathway Stimulates High-Yield Production Using Resting Corynebacterium glutamicum in the Absence of External Electron Acceptors.
    Shen J; Chen J; Solem C; Jensen PR; Liu JM
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33036990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum.
    Wang C; Zhou Z; Cai H; Chen Z; Xu H
    J Ind Microbiol Biotechnol; 2017 Jul; 44(7):1115-1126. PubMed ID: 28303352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-production of hydrogen and ethanol from glucose by modification of glycolytic pathways in Escherichia coli - from Embden-Meyerhof-Parnas pathway to pentose phosphate pathway.
    Seol E; Sekar BS; Raj SM; Park S
    Biotechnol J; 2016 Feb; 11(2):249-56. PubMed ID: 26581029
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Model-assisted metabolic engineering of Escherichia coli for long chain alkane and alcohol production.
    Fatma Z; Hartman H; Poolman MG; Fell DA; Srivastava S; Shakeel T; Yazdani SS
    Metab Eng; 2018 Mar; 46():1-12. PubMed ID: 29408291
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of cytidine production by coexpression of gnd, zwf, and prs genes in recombinant Escherichia coli CYT15.
    Fang H; Xie X; Xu Q; Zhang C; Chen N
    Biotechnol Lett; 2013 Feb; 35(2):245-51. PubMed ID: 23070626
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving squalene production by enhancing the NADPH/NADP
    Xu W; Yao J; Liu L; Ma X; Li W; Sun X; Wang Y
    Biotechnol Biofuels; 2019; 12():68. PubMed ID: 30962822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing pentose phosphate pathway in Corynebacterium glutamicum to improve l-isoleucine production.
    Ma W; Wang J; Li Y; Hu X; Shi F; Wang X
    Biotechnol Appl Biochem; 2016 Nov; 63(6):877-885. PubMed ID: 27010514
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model-guided metabolic gene knockout of gnd for enhanced succinate production in Escherichia coli from glucose and glycerol substrates.
    Mienda BS; Shamsir MS; Illias RM
    Comput Biol Chem; 2016 Apr; 61():130-7. PubMed ID: 26878126
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulating pyruvate to acetyl-CoA conversion in Escherichia coli for anaerobic succinate biosynthesis from glucose with the yield close to the stoichiometric maximum.
    Skorokhodova AY; Morzhakova AA; Gulevich AY; Debabov VG
    J Biotechnol; 2015 Nov; 214():33-42. PubMed ID: 26362413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Increased NADPH Concentration by Metabolic Engineering of the Pentose Phosphate Pathway on Antibiotic Production and Sporulation in
    Jin XM; Chang YK; Lee JH; Hong SK
    J Microbiol Biotechnol; 2017 Oct; 27(10):1867-1876. PubMed ID: 28838222
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analysis of NADPH supply during xylitol production by engineered Escherichia coli.
    Chin JW; Khankal R; Monroe CA; Maranas CD; Cirino PC
    Biotechnol Bioeng; 2009 Jan; 102(1):209-20. PubMed ID: 18698648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Central pathway engineering for enhanced succinate biosynthesis from acetate in Escherichia coli.
    Huang B; Yang H; Fang G; Zhang X; Wu H; Li Z; Ye Q
    Biotechnol Bioeng; 2018 Apr; 115(4):943-954. PubMed ID: 29278414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-production of hydrogen and ethanol by pfkA-deficient Escherichia coli with activated pentose-phosphate pathway: reduction of pyruvate accumulation.
    Sundara Sekar B; Seol E; Mohan Raj S; Park S
    Biotechnol Biofuels; 2016; 9():95. PubMed ID: 27134652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modular pathway engineering of Corynebacterium glutamicum to improve xylose utilization and succinate production.
    Jo S; Yoon J; Lee SM; Um Y; Han SO; Woo HM
    J Biotechnol; 2017 Sep; 258():69-78. PubMed ID: 28153765
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving isobutanol production in metabolically engineered Escherichia coli by co-producing ethanol and modulation of pentose phosphate pathway.
    Liu Z; Liu P; Xiao D; Zhang X
    J Ind Microbiol Biotechnol; 2016 Jun; 43(6):851-60. PubMed ID: 26946319
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.