BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27980672)

  • 21. Metabolic engineering of Escherichia coli to produce succinate from soybean hydrolysate under anaerobic conditions.
    Zhu F; Wang Y; San KY; Bennett GN
    Biotechnol Bioeng; 2018 Jul; 115(7):1743-1754. PubMed ID: 29508908
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Targeted optimization of central carbon metabolism for engineering succinate production in Escherichia coli.
    Zhao Y; Wang CS; Li FF; Liu ZN; Zhao GR
    BMC Biotechnol; 2016 Jun; 16(1):52. PubMed ID: 27342774
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Modification of targets related to the Entner-Doudoroff/pentose phosphate pathway route for methyl-D-erythritol 4-phosphate-dependent carotenoid biosynthesis in Escherichia coli.
    Li C; Ying LQ; Zhang SS; Chen N; Liu WF; Tao Y
    Microb Cell Fact; 2015 Aug; 14():117. PubMed ID: 26264597
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of Succinate from Acetate by Metabolically Engineered Escherichia coli.
    Li Y; Huang B; Wu H; Li Z; Ye Q; Zhang YP
    ACS Synth Biol; 2016 Nov; 5(11):1299-1307. PubMed ID: 27088218
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Efficient succinic acid production from glucose through overexpression of pyruvate carboxylase in an Escherichia coli alcohol dehydrogenase and lactate dehydrogenase mutant.
    Sánchez AM; Bennett GN; San KY
    Biotechnol Prog; 2005; 21(2):358-65. PubMed ID: 15801771
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Re-engineering Escherichia coli KJ122 to enhance the utilization of xylose and xylose/glucose mixture for efficient succinate production in mineral salt medium.
    Khunnonkwao P; Jantama SS; Kanchanatawee S; Jantama K
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):127-141. PubMed ID: 29079860
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Metabolic engineering and transhydrogenase effects on NADPH availability in Escherichia coli.
    Jan J; Martinez I; Wang Y; Bennett GN; San KY
    Biotechnol Prog; 2013; 29(5):1124-30. PubMed ID: 23794523
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Combinatorial optimization of CO2 transport and fixation to improve succinate production by promoter engineering.
    Yu JH; Zhu LW; Xia ST; Li HM; Tang YL; Liang XH; Chen T; Tang YJ
    Biotechnol Bioeng; 2016 Jul; 113(7):1531-41. PubMed ID: 26724788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Systematic optimization of gene expression of pentose phosphate pathway enhances ethanol production from a glucose/xylose mixed medium in a recombinant Saccharomyces cerevisiae.
    Kobayashi Y; Sahara T; Ohgiya S; Kamagata Y; Fujimori KE
    AMB Express; 2018 Aug; 8(1):139. PubMed ID: 30151682
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Updates to a
    Jekabsons MB; Gebril HM; Wang YH; Avula B; Khan IA
    Neurochem Int; 2017 Oct; 109():54-67. PubMed ID: 28412312
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose.
    Luo ZW; Kim WJ; Lee SY
    ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The pentose phosphate pathway in industrially relevant fungi: crucial insights for bioprocessing.
    Masi A; Mach RL; Mach-Aigner AR
    Appl Microbiol Biotechnol; 2021 May; 105(10):4017-4031. PubMed ID: 33950280
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metabolic flux analysis of wild-type Escherichia coli and mutants deficient in pyruvate-dissimilating enzymes during the fermentative metabolism of glucuronate.
    Murarka A; Clomburg JM; Gonzalez R
    Microbiology (Reading); 2010 Jun; 156(Pt 6):1860-1872. PubMed ID: 20167619
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Global metabolic response of Escherichia coli to gnd or zwf gene-knockout, based on 13C-labeling experiments and the measurement of enzyme activities.
    Zhao J; Baba T; Mori H; Shimizu K
    Appl Microbiol Biotechnol; 2004 Mar; 64(1):91-8. PubMed ID: 14661115
    [TBL] [Abstract][Full Text] [Related]  

  • 35. In silico-guided metabolic engineering of Bacillus subtilis for efficient biosynthesis of purine nucleosides by blocking the key backflow nodes.
    Deng A; Qiu Q; Sun Q; Chen Z; Wang J; Zhang Y; Liu S; Wen T
    Biotechnol Biofuels Bioprod; 2022 Aug; 15(1):82. PubMed ID: 35953809
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Increasing the Pentose Phosphate Pathway Flux to Improve Plasmid DNA Production in Engineered
    de la Cruz M; Kunert F; Taymaz-Nikerel H; Sigala JC; Gosset G; Büchs J; Lara AR
    Microorganisms; 2024 Jan; 12(1):. PubMed ID: 38257977
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fed-batch culture of a metabolically engineered Escherichia coli strain designed for high-level succinate production and yield under aerobic conditions.
    Lin H; Bennett GN; San KY
    Biotechnol Bioeng; 2005 Jun; 90(6):775-9. PubMed ID: 15803467
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhanced succinate production from glycerol by engineered Escherichia coli strains.
    Li Q; Wu H; Li Z; Ye Q
    Bioresour Technol; 2016 Oct; 218():217-23. PubMed ID: 27371794
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Current advances of succinate biosynthesis in metabolically engineered Escherichia coli.
    Zhu LW; Tang YJ
    Biotechnol Adv; 2017 Dec; 35(8):1040-1048. PubMed ID: 28939498
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Engineering Escherichia coli to grow constitutively on D-xylose using the carbon-efficient Weimberg pathway.
    Rossoni L; Carr R; Baxter S; Cortis R; Thorpe T; Eastham G; Stephens G
    Microbiology (Reading); 2018 Mar; 164(3):287-298. PubMed ID: 29458683
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.