These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 27980926)
41. Photovoltaic Effects of Dye-Sensitized Solar Cells Using Double-Layered TiO Kim MR; Pham TC; Yang HS; Park SH; Yang S; Park M; Lee SG; Lee S ACS Omega; 2023 Apr; 8(16):14699-14709. PubMed ID: 37125135 [TBL] [Abstract][Full Text] [Related]
42. Characteristics of the Dye-Sensitized Solar Cells Using TiO₂ Nanotubes Treated with TiCl₄. Yang JH; Bark CW; Kim KH; Choi HW Materials (Basel); 2014 May; 7(5):3522-3532. PubMed ID: 28788633 [TBL] [Abstract][Full Text] [Related]
43. Increased power conversion efficiency of dye-sensitized solar cells with counter electrodes based on carbon materials. Zhang S; Jin J; Li D; Fu Z; Gao S; Cheng S; Yu X; Xiong Y RSC Adv; 2019 Jul; 9(38):22092-22100. PubMed ID: 35518900 [TBL] [Abstract][Full Text] [Related]
44. Enhanced photovoltaic performance of a dye-sensitized solar cell using graphene-TiO2 photoanode prepared by a novel in situ simultaneous reduction-hydrolysis technique. Chen L; Zhou Y; Tu W; Li Z; Bao C; Dai H; Yu T; Liu J; Zou Z Nanoscale; 2013 Apr; 5(8):3481-5. PubMed ID: 23483083 [TBL] [Abstract][Full Text] [Related]
45. Metallic nanoparticles and hybrids of metallic nanoparticles/graphene nanomaterials for enhanced photon harvesting and charge transport in polymer and dye sensitized solar cells. Amollo TA Heliyon; 2024 Mar; 10(5):e26401. PubMed ID: 38449657 [TBL] [Abstract][Full Text] [Related]
46. A down-shifting Eu Llanos J; Brito I; Espinoza D; Sekar R; Manidurai P R Soc Open Sci; 2018 Feb; 5(2):171054. PubMed ID: 29515831 [TBL] [Abstract][Full Text] [Related]
47. Ball/dumbbell-like structured micrometer-sized Sb₂S₃ particles as a scattering layer in dye-sensitized solar cells. Senthil TS; Muthukumarasamy N; Kang M Opt Lett; 2014 Apr; 39(7):1865-8. PubMed ID: 24686625 [TBL] [Abstract][Full Text] [Related]
48. Nanoarchitectures in dye-sensitized solar cells: metal oxides, oxide perovskites and carbon-based materials. Shaikh JS; Shaikh NS; Mali SS; Patil JV; Pawar KK; Kanjanaboos P; Hong CK; Kim JH; Patil PS Nanoscale; 2018 Mar; 10(11):4987-5034. PubMed ID: 29488524 [TBL] [Abstract][Full Text] [Related]
49. Incorporation of Potassium Water Glass on Photoelectrodes and Its Effects on the Performance of Dye-Sensitized Solar Cells. Oh JH; Lee SJ; Kim DH; Sung SJ; Kang CS; Han YS J Nanosci Nanotechnol; 2015 Nov; 15(11):8854-8. PubMed ID: 26726606 [TBL] [Abstract][Full Text] [Related]
50. Investigating the electron tunneling effect on photovoltaic performance of almond ( Abodunrin TJ; Ajayi OO; Emetere ME; Popoola API; Uyor UO; Popoola O Heliyon; 2020 Jan; 6(1):e02961. PubMed ID: 31922040 [TBL] [Abstract][Full Text] [Related]
51. Photoelectrochemical Cells Based on Dye Sensitization for Electricity and Fuel Production. Vlachopoulos N; Hagfeldt A Chimia (Aarau); 2019 Nov; 73(11):894-905. PubMed ID: 31753070 [TBL] [Abstract][Full Text] [Related]
52. Fence Constructed at a Semiconductor/Electrolyte Interface Improving the Electron Collection Efficiency of the Photoelectrode for a Dye-Sensitized Solar Cell. Liu H; Lou Y; Jungsuttiwong S; Yuan S; Zhao Y; Wang Z; Shi L; Zhou H ACS Appl Mater Interfaces; 2017 Jan; 9(3):2396-2402. PubMed ID: 28033702 [TBL] [Abstract][Full Text] [Related]
54. Efficiency Improvement of Dye-Sensitized Solar Cells with Surface-Modified Photoelectrodes. Oh JH; Kim HJ; Kim DY; Hwang CG; Kwak G; Han YS J Nanosci Nanotechnol; 2015 Feb; 15(2):1507-10. PubMed ID: 26353681 [TBL] [Abstract][Full Text] [Related]
55. The impact of a TiO Pervaiz H; Shahzad N; Jamil Q RSC Adv; 2024 May; 14(23):15907-15914. PubMed ID: 38756851 [TBL] [Abstract][Full Text] [Related]
56. Semiconductors as Effective Electrodes for Dye Sensitized Solar Cell Applications. Moharam MM; El Shazly AN; Anand KV; Rayan DEA; Mohammed MKA; Rashad MM; Shalan AE Top Curr Chem (Cham); 2021 Apr; 379(3):20. PubMed ID: 33834314 [TBL] [Abstract][Full Text] [Related]
57. Visible light water splitting using dye-sensitized oxide semiconductors. Youngblood WJ; Lee SH; Maeda K; Mallouk TE Acc Chem Res; 2009 Dec; 42(12):1966-73. PubMed ID: 19905000 [TBL] [Abstract][Full Text] [Related]
58. Charge separation versus recombination in dye-sensitized nanocrystalline solar cells: the minimization of kinetic redundancy. Haque SA; Palomares E; Cho BM; Green AN; Hirata N; Klug DR; Durrant JR J Am Chem Soc; 2005 Mar; 127(10):3456-62. PubMed ID: 15755165 [TBL] [Abstract][Full Text] [Related]
59. Functionalization of Carbon Nanotubes and Graphene Derivatives with Conducting Polymers and Their Applications in Dye-Sensitized Solar Cells and Supercapacitors. Văduva M; Burlănescu T; Baibarac M Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201718 [TBL] [Abstract][Full Text] [Related]
60. Development of Rapid Curing SiO Jiao S; Sun Z; Wen J; Liu Y; Li F; Miao Q; Wu W; Li L; Zhou Y ACS Appl Mater Interfaces; 2020 Oct; 12(43):48794-48803. PubMed ID: 33052670 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]