These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 27980983)

  • 41. Tuning Chemical Potential Difference across Alternately Doped Graphene p-n Junctions for High-Efficiency Photodetection.
    Lin L; Xu X; Yin J; Sun J; Tan Z; Koh AL; Wang H; Peng H; Chen Y; Liu Z
    Nano Lett; 2016 Jul; 16(7):4094-101. PubMed ID: 27351273
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Oriented Carbon Nanostructures by Plasma Processing: Recent Advances and Future Challenges.
    Santhosh NM; Filipič G; Tatarova E; Baranov O; Kondo H; Sekine M; Hori M; Ostrikov KK; Cvelbar U
    Micromachines (Basel); 2018 Nov; 9(11):. PubMed ID: 30715064
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Synthesis of Large Area Graphene for High Performance in Flexible Optoelectronic Devices.
    Polat EO; Balci O; Kakenov N; Uzlu HB; Kocabas C; Dahiya R
    Sci Rep; 2015 Nov; 5():16744. PubMed ID: 26578425
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Defect-Free Graphene Synthesized Directly at 150 °C via Chemical Vapor Deposition with No Transfer.
    Park BJ; Choi JS; Eom JH; Ha H; Kim HY; Lee S; Shin H; Yoon SG
    ACS Nano; 2018 Feb; 12(2):2008-2016. PubMed ID: 29390178
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MoS2 Surface Structure Tailoring via Carbonaceous Promoter.
    Shi Y; Li H; Wong JI; Zhang X; Wang Y; Song H; Yang HY
    Sci Rep; 2015 May; 5():10378. PubMed ID: 25994238
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Enhanced Mobility in Suspended Chemical Vapor-Deposited Graphene Field-Effect Devices in Ambient Conditions.
    Thodkar K; Gramm F
    ACS Appl Mater Interfaces; 2023 Aug; 15(31):37756-37763. PubMed ID: 37490848
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Plasma-Enhanced Chemical Vapor Deposition of Acetylene on Codeposited Bimetal Catalysts Increasing Graphene Sheet Continuity Under Low-Temperature Growth Conditions.
    Tracy J; Zietz O; Olson S; Jiao J
    Nanoscale Res Lett; 2019 Oct; 14(1):335. PubMed ID: 31659521
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Graphene growth through a recrystallization process in plasma enhanced chemical vapor deposition.
    Bekdüz B; Beckmann Y; Mischke J; Twellmann J; Mertin W; Bacher G
    Nanotechnology; 2018 Nov; 29(45):455603. PubMed ID: 30156560
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Bridging the Gap between Reality and Ideal in Chemical Vapor Deposition Growth of Graphene.
    Lin L; Deng B; Sun J; Peng H; Liu Z
    Chem Rev; 2018 Sep; 118(18):9281-9343. PubMed ID: 30207458
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Toward 300 mm wafer-scalable high-performance polycrystalline chemical vapor deposited graphene transistors.
    Rahimi S; Tao L; Chowdhury SF; Park S; Jouvray A; Buttress S; Rupesinghe N; Teo K; Akinwande D
    ACS Nano; 2014 Oct; 8(10):10471-9. PubMed ID: 25198884
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Direct growth of nanographene at low temperature from carbon black for highly sensitive temperature detectors.
    Li K; Cai Z; Li M; Liu D; Cao M; Xia D; Jin Z; Wang Z; Dong L; Xu X; Wei D
    Nanotechnology; 2016 Dec; 27(50):505603. PubMed ID: 27861166
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Scalable synthesis of few-layer graphene ribbons with controlled morphologies by a template method and their applications in nanoelectromechanical switches.
    Wei D; Liu Y; Zhang H; Huang L; Wu B; Chen J; Yu G
    J Am Chem Soc; 2009 Aug; 131(31):11147-54. PubMed ID: 19618950
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Exploring oxygen in graphene chemical vapor deposition synthesis.
    Liang T; Luan C; Chen H; Xu M
    Nanoscale; 2017 Mar; 9(11):3719-3735. PubMed ID: 28267184
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Direct CVD Growth of Graphene on Technologically Important Dielectric and Semiconducting Substrates.
    Khan A; Islam SM; Ahmed S; Kumar RR; Habib MR; Huang K; Hu M; Yu X; Yang D
    Adv Sci (Weinh); 2018 Nov; 5(11):1800050. PubMed ID: 30479910
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Synthesis of carbon nanowall by plasma-enhanced chemical vapor deposition method.
    Liu R; Chi Y; Fang L; Tang Z; Yi X
    J Nanosci Nanotechnol; 2014 Feb; 14(2):1647-57. PubMed ID: 24749447
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Chemical vapor deposition growth of graphene and other nanomaterials with 3D architectures towards electrocatalysis and secondary battery-related applications.
    Peng Y; Hu J; Huan Y; Zhang Y
    Nanoscale; 2024 Apr; 16(16):7734-7751. PubMed ID: 38563120
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Epitaxial Growth of Two-Dimensional Layered Transition-Metal Dichalcogenides: Growth Mechanism, Controllability, and Scalability.
    Li H; Li Y; Aljarb A; Shi Y; Li LJ
    Chem Rev; 2018 Jul; 118(13):6134-6150. PubMed ID: 28682055
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Recent Progress in the Synthesis of MoS
    Mouloua D; Kotbi A; Deokar G; Kaja K; El Marssi M; El Khakani MA; Jouiad M
    Materials (Basel); 2021 Jun; 14(12):. PubMed ID: 34198592
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics.
    Gomez De Arco L; Zhang Y; Schlenker CW; Ryu K; Thompson ME; Zhou C
    ACS Nano; 2010 May; 4(5):2865-73. PubMed ID: 20394355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.