These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 27981850)

  • 1. Wide Band Gap Semiconductor from a Hidden 2D Incommensurate Graphene Phase.
    Conrad M; Wang F; Nevius M; Jinkins K; Celis A; Narayanan Nair M; Taleb-Ibrahimi A; Tejeda A; Garreau Y; Vlad A; Coati A; Miceli PF; Conrad EH
    Nano Lett; 2017 Jan; 17(1):341-347. PubMed ID: 27981850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Band Gap Opening Induced by the Structural Periodicity in Epitaxial Graphene Buffer Layer.
    N Nair M; Palacio I; Celis A; Zobelli A; Gloter A; Kubsky S; Turmaud JP; Conrad M; Berger C; de Heer W; Conrad EH; Taleb-Ibrahimi A; Tejeda A
    Nano Lett; 2017 Apr; 17(4):2681-2689. PubMed ID: 28345926
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Epitaxial growth of a single-crystal hybridized boron nitride and graphene layer on a wide-band gap semiconductor.
    Shin HC; Jang Y; Kim TH; Lee JH; Oh DH; Ahn SJ; Lee JH; Moon Y; Park JH; Yoo SJ; Park CY; Whang D; Yang CW; Ahn JR
    J Am Chem Soc; 2015 Jun; 137(21):6897-905. PubMed ID: 25973636
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.
    Heine T
    Acc Chem Res; 2015 Jan; 48(1):65-72. PubMed ID: 25489917
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wide-gap semiconducting graphene from nitrogen-seeded SiC.
    Wang F; Liu G; Rothwell S; Nevius M; Tejeda A; Taleb-Ibrahimi A; Feldman LC; Cohen PI; Conrad EH
    Nano Lett; 2013 Oct; 13(10):4827-32. PubMed ID: 24060338
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Observation of variable hybridized-band gaps in Eu-intercalated graphene.
    Sung S; Kim S; Lee P; Kim J; Ryu M; Park H; Kim K; Min BI; Chung J
    Nanotechnology; 2017 May; 28(20):205201. PubMed ID: 28345532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semiconducting Graphene from Highly Ordered Substrate Interactions.
    Nevius MS; Conrad M; Wang F; Celis A; Nair MN; Taleb-Ibrahimi A; Tejeda A; Conrad EH
    Phys Rev Lett; 2015 Sep; 115(13):136802. PubMed ID: 26451574
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Greatly Enhanced Anticorrosion of Cu by Commensurate Graphene Coating.
    Xu X; Yi D; Wang Z; Yu J; Zhang Z; Qiao R; Sun Z; Hu Z; Gao P; Peng H; Liu Z; Yu D; Wang E; Jiang Y; Ding F; Liu K
    Adv Mater; 2018 Feb; 30(6):. PubMed ID: 29266426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quasi free-standing epitaxial graphene fabrication on 3C-SiC/Si(111).
    Amjadipour M; Tadich A; Boeckl JJ; Lipton-Duffin J; MacLeod J; Iacopi F; Motta N
    Nanotechnology; 2018 Apr; 29(14):145601. PubMed ID: 29376834
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasicrystalline 30° twisted bilayer graphene as an incommensurate superlattice with strong interlayer coupling.
    Yao W; Wang E; Bao C; Zhang Y; Zhang K; Bao K; Chan CK; Chen C; Avila J; Asensio MC; Zhu J; Zhou S
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):6928-6933. PubMed ID: 29915054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Epitaxial graphene on SiC(0001) and [Formula: see text]: from surface reconstructions to carbon electronics.
    Starke U; Riedl C
    J Phys Condens Matter; 2009 Apr; 21(13):134016. PubMed ID: 21817491
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bandgap opening by patterning graphene.
    Dvorak M; Oswald W; Wu Z
    Sci Rep; 2013; 3():2289. PubMed ID: 23887253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ab initio study of graphene on SiC.
    Mattausch A; Pankratov O
    Phys Rev Lett; 2007 Aug; 99(7):076802. PubMed ID: 17930914
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Induced growth of quasi-free-standing graphene on SiC substrates.
    Liu Z; Su Z; Li Q; Sun L; Zhang X; Yang Z; Liu X; Li Y; Li Y; Yu F; Zhao X
    RSC Adv; 2019 Oct; 9(55):32226-32231. PubMed ID: 35530756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intercalation of Au Atoms into SiC(0001)/Buffer Interfaces-A First-Principles Density Functional Theory Study.
    Bayani A; Larsson K
    ACS Omega; 2020 Jun; 5(24):14842-14846. PubMed ID: 32596622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Predicting Two-Dimensional Silicon Carbide Monolayers.
    Shi Z; Zhang Z; Kutana A; Yakobson BI
    ACS Nano; 2015 Oct; 9(10):9802-9. PubMed ID: 26394207
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electronic structure of epitaxial graphene layers on SiC: effect of the substrate.
    Varchon F; Feng R; Hass J; Li X; Nguyen BN; Naud C; Mallet P; Veuillen JY; Berger C; Conrad EH; Magaud L
    Phys Rev Lett; 2007 Sep; 99(12):126805. PubMed ID: 17930540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface properties of CVD grown graphene transferred onto MoS2(0001).
    Coy Diaz H; Addou R; Batzill M
    Nanoscale; 2014 Jan; 6(2):1071-8. PubMed ID: 24297086
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nonlocal screening of plasmons in graphene by semiconducting and metallic substrates: first-principles calculations.
    Yan J; Thygesen KS; Jacobsen KW
    Phys Rev Lett; 2011 Apr; 106(14):146803. PubMed ID: 21561211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Semiconducting Graphene on Silicon from First-Principles Calculations.
    Dang X; Dong H; Wang L; Zhao Y; Guo Z; Hou T; Li Y; Lee ST
    ACS Nano; 2015 Aug; 9(8):8562-8. PubMed ID: 26213346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.