BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 27981910)

  • 1. Multilevel Analysis of Locomotion in Immature Preparations Suggests Innovative Strategies to Reactivate Stepping after Spinal Cord Injury.
    Brumley MR; Guertin PA; Taccola G
    Curr Pharm Des; 2017; 23(12):1764-1777. PubMed ID: 27981910
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Human Spinal Locomotor Circuits by Phasic Step-Induced Feedback and by Tonic Electrical and Pharmacological Neuromodulation.
    Hofstoetter US; Knikou M; Guertin PA; Minassian K
    Curr Pharm Des; 2017; 23(12):1805-1820. PubMed ID: 27981912
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recovery of locomotion after spinal cord injury: some facts and mechanisms.
    Rossignol S; Frigon A
    Annu Rev Neurosci; 2011; 34():413-40. PubMed ID: 21469957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Human Central Pattern Generator for Locomotion: Does It Exist and Contribute to Walking?
    Minassian K; Hofstoetter US; Dzeladini F; Guertin PA; Ijspeert A
    Neuroscientist; 2017 Dec; 23(6):649-663. PubMed ID: 28351197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of the serotonergic system in locomotor recovery after spinal cord injury.
    Ghosh M; Pearse DD
    Front Neural Circuits; 2014; 8():151. PubMed ID: 25709569
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical stimulation and motor recovery.
    Young W
    Cell Transplant; 2015; 24(3):429-46. PubMed ID: 25646771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury.
    Zhang SX; Huang F; Gates M; White J; Holmberg EG
    J Neurosci Methods; 2010 Mar; 187(2):183-9. PubMed ID: 20079372
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two types of motor modulation underlying human stepping evoked by spinal cord electrical stimulation (SCES).
    Shapkova EY; Schomburg ED
    Acta Physiol Pharmacol Bulg; 2001; 26(3):155-7. PubMed ID: 11695529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Unique Spatiotemporal Neuromodulation of the Lumbosacral Circuitry Shapes Locomotor Success after Spinal Cord Injury.
    Shah PK; Sureddi S; Alam M; Zhong H; Roy RR; Edgerton VR; Gerasimenko Y
    J Neurotrauma; 2016 Sep; 33(18):1709-23. PubMed ID: 26792233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of the adaptability and recovery of locomotion after spinal cord injury.
    Barbeau H; Fung J; Leroux A; Ladouceur M
    Prog Brain Res; 2002; 137():9-25. PubMed ID: 12440356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neuromodulation of the lumbar spinal locomotor circuit.
    AuYong N; Lu DC
    Neurosurg Clin N Am; 2014 Jan; 25(1):15-23. PubMed ID: 24262896
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Grafting of fetal brainstem 5-HT neurons into the sublesional spinal cord of paraplegic rats restores coordinated hindlimb locomotion.
    Sławińska U; Miazga K; Cabaj AM; Leszczyńska AN; Majczyński H; Nagy JI; Jordan LM
    Exp Neurol; 2013 Sep; 247():572-81. PubMed ID: 23481546
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal cord stimulation: therapeutic benefits and movement generation after spinal cord injury.
    Tator CH; Minassian K; Mushahwar VK
    Handb Clin Neurol; 2012; 109():283-96. PubMed ID: 23098720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neural plasticity after human spinal cord injury: application of locomotor training to the rehabilitation of walking.
    Harkema SJ
    Neuroscientist; 2001 Oct; 7(5):455-68. PubMed ID: 11597104
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromodulation of the neural circuits controlling the lower urinary tract.
    Gad PN; Roy RR; Zhong H; Gerasimenko YP; Taccola G; Edgerton VR
    Exp Neurol; 2016 Nov; 285(Pt B):182-189. PubMed ID: 27381425
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of locomotor recovery following spinal cord injury.
    Barbeau H; Rossignol S
    Curr Opin Neurol; 1994 Dec; 7(6):517-24. PubMed ID: 7866583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholinergic mechanisms in spinal locomotion-potential target for rehabilitation approaches.
    Jordan LM; McVagh JR; Noga BR; Cabaj AM; Majczyński H; Sławińska U; Provencher J; Leblond H; Rossignol S
    Front Neural Circuits; 2014; 8():132. PubMed ID: 25414645
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kainate and metabolic perturbation mimicking spinal injury differentially contribute to early damage of locomotor networks in the in vitro neonatal rat spinal cord.
    Taccola G; Margaryan G; Mladinic M; Nistri A
    Neuroscience; 2008 Aug; 155(2):538-55. PubMed ID: 18602453
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spinal Epidural Stimulation Strategies: Clinical Implications of Locomotor Studies in Spinal Rats.
    Shah PK; Lavrov I
    Neuroscientist; 2017 Dec; 23(6):664-680. PubMed ID: 28345483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase-based control of the central pattern generator for locomotion.
    Vogelstein R; Etienne-Cummings R; Cohen AH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2125-8. PubMed ID: 19964580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.