BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27981948)

  • 1. Three-dimensional donut-like gold nanorings with multiple hot spots for surface-enhanced raman spectroscopy.
    Zheng M; Zhu X; Chen Y; Xiang Q; Duan H
    Nanotechnology; 2017 Jan; 28(4):045303. PubMed ID: 27981948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quasi-3D gold nanoring cavity arrays with high-density hot-spots for SERS applications via nanosphere lithography.
    Ho CC; Zhao K; Lee TY
    Nanoscale; 2014 Aug; 6(15):8606-11. PubMed ID: 24978350
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering.
    Hossain MK; Drmosh QA
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec; 263():120141. PubMed ID: 34280795
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Monolayer Gold Nanorings Sandwich Film and Its Higher Surface-Enhanced Raman Scattering Intensity.
    Zhang L; Zhu T; Yang C; Jang HY; Jang HJ; Liu L; Park S
    Nanomaterials (Basel); 2020 Mar; 10(3):. PubMed ID: 32183019
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D Plasmon Coupling Assisted Sers on Nanoparticle-Nanocup Array Hybrids.
    Seo S; Chang TW; Liu GL
    Sci Rep; 2018 Feb; 8(1):3002. PubMed ID: 29445092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Localized surface plasmon resonance (LSPR) excitation on single silver nanoring with nanoscale surface roughness.
    Yu J; Gao Y; Zhang W; Wang P; Fang Y; Yang L
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Sep; 317():124405. PubMed ID: 38718746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Suspended 3D metallic dimers with sub-10 nm gap for high-sensitive SERS detection.
    Zeng P; Zhou Y; Shu Z; Liang H; Zhang X; Chen Y; Duan H; Zheng M
    Nanotechnology; 2022 Dec; 34(9):. PubMed ID: 36384034
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Au nanoring arrays as surface enhanced Raman spectroscopy substrate for chemical component study of individual atmospheric aerosol particle.
    Cheng H; Dong X; Yang Y; Feng Y; Wang T; Tahir MA; Zhang L; Fu H
    J Environ Sci (China); 2021 Feb; 100():11-17. PubMed ID: 33279023
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing the location of hot spots by surface-enhanced Raman spectroscopy: toward uniform substrates.
    Wang X; Li M; Meng L; Lin K; Feng J; Huang T; Yang Z; Ren B
    ACS Nano; 2014 Jan; 8(1):528-36. PubMed ID: 24328390
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing the Location of 3D Hot Spots in Gold Nanoparticle Films Using Surface-Enhanced Raman Spectroscopy.
    Zhang YJ; Chen S; Radjenovic P; Bodappa N; Zhang H; Yang ZL; Tian ZQ; Li JF
    Anal Chem; 2019 Apr; 91(8):5316-5322. PubMed ID: 30912431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Enhanced Raman Scattering and Fluorescence on Gold Nanogratings.
    Chang YC; Huang BH; Lin TH
    Nanomaterials (Basel); 2020 Apr; 10(4):. PubMed ID: 32316451
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimization of the particle density to maximize the SERS enhancement factor of periodic plasmonic nanostructure array.
    Wei S; Zheng M; Xiang Q; Hu H; Duan H
    Opt Express; 2016 Sep; 24(18):20613-20. PubMed ID: 27607665
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-dimensional (3D) plasmonic hot spots for label-free sensing and effective photothermal killing of multiple drug resistant superbugs.
    Jones S; Sinha SS; Pramanik A; Ray PC
    Nanoscale; 2016 Nov; 8(43):18301-18308. PubMed ID: 27714099
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A SERS and electrical sensor from gas-phase generated Ag nanoparticles self-assembled on planar substrates.
    Wang S; Tay LL; Liu H
    Analyst; 2016 Mar; 141(5):1721-33. PubMed ID: 26824092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Highly controlled surface-enhanced Raman scattering chips using nanoengineered gold blocks.
    Yokota Y; Ueno K; Misawa H
    Small; 2011 Jan; 7(2):252-8. PubMed ID: 21213390
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of highly sensitive and reproducible 3D surface-enhanced Raman spectroscopy substrates through in situ cleaning and layer-by-layer assembly of Au@Ag nanocube monolayer film.
    Gao M; Lin X; Li Z; Wang X; Qiao Y; Zhao H; Zhang J; Wang L
    Nanotechnology; 2019 Aug; 30(34):345604. PubMed ID: 31067524
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Layer-by-layer assembly of Ag nanowires into 3D woodpile-like structures to achieve high density "hot spots" for surface-enhanced Raman scattering.
    Chen M; Phang IY; Lee MR; Yang JK; Ling XY
    Langmuir; 2013 Jun; 29(23):7061-9. PubMed ID: 23706081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generation of ultralarge surface enhanced Raman spectroscopy (SERS)-active hot-spot volumes by an array of 2D nano-superlenses.
    Wei K; Shen Z; Malini O
    Anal Chem; 2012 Jan; 84(2):908-16. PubMed ID: 22107062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays.
    Yu Q; Braswell S; Christin B; Xu J; Wallace PM; Gong H; Kaminsky D
    Nanotechnology; 2010 Sep; 21(35):355301. PubMed ID: 20683142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.