These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27982030)

  • 1. Electron energy-loss spectroscopy of branched gap plasmon resonators.
    Raza S; Esfandyarpour M; Koh AL; Mortensen NA; Brongersma ML; Bozhevolnyi SI
    Nat Commun; 2016 Dec; 7():13790. PubMed ID: 27982030
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Channel plasmon subwavelength waveguide components including interferometers and ring resonators.
    Bozhevolnyi SI; Volkov VS; Devaux E; Laluet JY; Ebbesen TW
    Nature; 2006 Mar; 440(7083):508-11. PubMed ID: 16554814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Propagation and localization of quantum dot emission along a gap-plasmonic transmission line.
    Castro-Lopez M; Manjavacas A; García de Abajo J; van Hulst NF
    Opt Express; 2015 Nov; 23(23):29296-320. PubMed ID: 26698415
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-Loss Tunable Infrared Plasmons in the High-Mobility Perovskite (Ba,La)SnO
    Yang H; Konečná A; Xu X; Cheong SW; Garfunkel E; García de Abajo FJ; Batson PE
    Small; 2022 Apr; 18(16):e2106897. PubMed ID: 35279954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Unveiling the Coupling of Single Metallic Nanoparticles to Whispering-Gallery Microcavities.
    Auad Y; Hamon C; Tencé M; Lourenço-Martins H; Mkhitaryan V; Stéphan O; García de Abajo FJ; Tizei LHG; Kociak M
    Nano Lett; 2022 Jan; 22(1):319-327. PubMed ID: 34907775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanostructured hybrid plasmonic waveguide in a slot structure for high-performance light transmission.
    Huang CC; Chang RJ; Huang CC
    Opt Express; 2021 Aug; 29(18):29341-29356. PubMed ID: 34615045
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling of gap plasmons in multi-wire waveguides.
    Manjavacas A; García de Abajo FJ
    Opt Express; 2009 Oct; 17(22):19401-13. PubMed ID: 19997160
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cathodoluminescence Phase Extraction of the Coupling between Nanoparticles and Surface Plasmon Polaritons.
    Sannomiya T; Konečná A; Matsukata T; Thollar Z; Okamoto T; García de Abajo FJ; Yamamoto N
    Nano Lett; 2020 Jan; 20(1):592-598. PubMed ID: 31855432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wireless Communication with Nanoplasmonic Data Carriers: Macroscale Propagation of Nanophotonic Plasmon Polaritons Probed by Near-Field Nanoimaging.
    Cohen M; Abulafia Y; Lev D; Lewis A; Shavit R; Zalevsky Z
    Nano Lett; 2017 Sep; 17(9):5181-5186. PubMed ID: 28467084
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extremely confined gap plasmon modes: when nonlocality matters.
    Boroviks S; Lin ZH; Zenin VA; Ziegler M; Dellith A; Gonçalves PAD; Wolff C; Bozhevolnyi SI; Huang JS; Mortensen NA
    Nat Commun; 2022 Jun; 13(1):3105. PubMed ID: 35661728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear Graphene Nanoplasmonics.
    Cox JD; García de Abajo FJ
    Acc Chem Res; 2019 Sep; 52(9):2536-2547. PubMed ID: 31448890
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Observation of Plasmon Band Formation and Delocalization in Quasi-Infinite Nanoparticle Chains.
    Mayer M; Potapov PL; Pohl D; Steiner AM; Schultz J; Rellinghaus B; Lubk A; König TAF; Fery A
    Nano Lett; 2019 Jun; 19(6):3854-3862. PubMed ID: 31117756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct photonic-plasmonic coupling and routing in single nanowires.
    Yan R; Pausauskie P; Huang J; Yang P
    Proc Natl Acad Sci U S A; 2009 Dec; 106(50):21045-50. PubMed ID: 19955430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum interference in plasmonic circuits.
    Heeres RW; Kouwenhoven LP; Zwiller V
    Nat Nanotechnol; 2013 Oct; 8(10):719-22. PubMed ID: 23934097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plasmon Waveguiding in Nanowires.
    Wei H; Pan D; Zhang S; Li Z; Li Q; Liu N; Wang W; Xu H
    Chem Rev; 2018 Mar; 118(6):2882-2926. PubMed ID: 29446301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantum Plasmonics: Energy Transport Through Plasmonic Gap.
    Lee J; Jeon DJ; Yeo JS
    Adv Mater; 2021 Nov; 33(47):e2006606. PubMed ID: 33891781
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Directional emission of nanoscale chiral sources modified by gap plasmons.
    Lin H; Wen T; Tang J; Ye L; Zhang G; Zhang W; Gu Y; Gong Q; Lu G
    Nanotechnology; 2023 Mar; 34(24):. PubMed ID: 36893457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterizing Localized Surface Plasmons Using Electron Energy-Loss Spectroscopy.
    Cherqui C; Thakkar N; Li G; Camden JP; Masiello DJ
    Annu Rev Phys Chem; 2016 May; 67():331-57. PubMed ID: 27215817
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Secondary Electron Imaging of Light at the Nanoscale.
    Cohen M; Abulafia Y; Shavit R; Zalevsky Z
    ACS Nano; 2017 Mar; 11(3):3274-3281. PubMed ID: 28264151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffraction limited focusing and routing of gap plasmons by a metal-dielectric-metal lens.
    Dennis BS; Czaplewski DA; Haftel MI; Lopez D; Blumberg G; Aksyuk V
    Opt Express; 2015 Aug; 23(17):21899-908. PubMed ID: 26368166
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.