These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 27982119)

  • 1. Declining Prevalence of Disease Vectors Under Climate Change.
    Escobar LE; Romero-Alvarez D; Leon R; Lepe-Lopez MA; Craft ME; Borbor-Cordova MJ; Svenning JC
    Sci Rep; 2016 Dec; 6():39150. PubMed ID: 27982119
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The spread of Zika and the potential for global arbovirus syndemics.
    Singer M
    Glob Public Health; 2017 Jan; 12(1):1-18. PubMed ID: 27590737
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Climate change influences on global distributions of dengue and chikungunya virus vectors.
    Campbell LP; Luther C; Moo-Llanes D; Ramsey JM; Danis-Lozano R; Peterson AT
    Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1665):. PubMed ID: 25688023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Forecasting dengue fever in Brazil: An assessment of climate conditions.
    Stolerman LM; Maia PD; Kutz JN
    PLoS One; 2019; 14(8):e0220106. PubMed ID: 31393908
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Climate Change and Spatiotemporal Distributions of Vector-Borne Diseases in Nepal--A Systematic Synthesis of Literature.
    Dhimal M; Ahrens B; Kuch U
    PLoS One; 2015; 10(6):e0129869. PubMed ID: 26086887
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change and the rising incidence of vector-borne diseases globally.
    George AM; Ansumana R; de Souza DK; Niyas VKM; Zumla A; Bockarie MJ
    Int J Infect Dis; 2024 Feb; 139():143-145. PubMed ID: 38096974
    [No Abstract]   [Full Text] [Related]  

  • 7. Transmission dynamics of dengue and chikungunya in a changing climate: do we understand the eco-evolutionary response?
    Tozan Y; Sjödin H; Muñoz ÁG; Rocklöv J
    Expert Rev Anti Infect Ther; 2020 Dec; 18(12):1187-1193. PubMed ID: 32741233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessment of changes of vector borne diseases with wetland characteristics using multivariate analysis.
    Sheela AM; Sarun S; Justus J; Vineetha P; Sheeja RV
    Environ Geochem Health; 2015 Apr; 37(2):391-410. PubMed ID: 25412801
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chikungunya, climate change, and human rights.
    Meason B; Paterson R
    Health Hum Rights; 2014 Jun; 16(1):105-12. PubMed ID: 25474599
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dengue and chikungunya: long-distance spread and outbreaks in naïve areas.
    Rezza G
    Pathog Glob Health; 2014 Dec; 108(8):349-55. PubMed ID: 25491436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of the spatial distribution of scientific publications regarding vector-borne diseases related to climate variability in South America.
    López MS; Müller GV; Sione WF
    Spat Spatiotemporal Epidemiol; 2018 Aug; 26():35-93. PubMed ID: 30390933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vector-borne diseases and climate change: a European perspective.
    Semenza JC; Suk JE
    FEMS Microbiol Lett; 2018 Feb; 365(2):. PubMed ID: 29149298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Climate patterns and mosquito-borne disease outbreaks in South and Southeast Asia.
    Servadio JL; Rosenthal SR; Carlson L; Bauer C
    J Infect Public Health; 2018; 11(4):566-571. PubMed ID: 29274851
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of climate change on vector-borne disease risk in the UK.
    Medlock JM; Leach SA
    Lancet Infect Dis; 2015 Jun; 15(6):721-30. PubMed ID: 25808458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surveillance of Vector-Borne Infections (Chikungunya, Dengue, and Malaria) in Bo, Sierra Leone, 2012-2013.
    Dariano DF; Taitt CR; Jacobsen KH; Bangura U; Bockarie AS; Bockarie MJ; Lahai J; Lamin JM; Leski TA; Yasuda C; Stenger DA; Ansumana R
    Am J Trop Med Hyg; 2017 Oct; 97(4):1151-1154. PubMed ID: 29031286
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An Analysis of the Potential Impact of Climate Change on Dengue Transmission in the Southeastern United States.
    Butterworth MK; Morin CW; Comrie AC
    Environ Health Perspect; 2017 Apr; 125(4):579-585. PubMed ID: 27713106
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential distribution of dengue fever under scenarios of climate change and economic development.
    Aström C; Rocklöv J; Hales S; Béguin A; Louis V; Sauerborn R
    Ecohealth; 2012 Dec; 9(4):448-54. PubMed ID: 23408100
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Species composition, seasonal occurrence, habitat preference and altitudinal distribution of malaria and other disease vectors in eastern Nepal.
    Dhimal M; Ahrens B; Kuch U
    Parasit Vectors; 2014 Nov; 7():540. PubMed ID: 25430654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Potential impact of climate change on emerging vector-borne and other infections in the UK.
    Baylis M
    Environ Health; 2017 Dec; 16(Suppl 1):112. PubMed ID: 29219091
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Changes in range of mosquito-borne diseases affected by global climatic fluctuations].
    Rydzanicz K; Kiewra D; Lonc E
    Wiad Parazytol; 2006; 52(2):73-83. PubMed ID: 17120987
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.