These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

69 related articles for article (PubMed ID: 27982147)

  • 1. A CoO
    Niishiro R; Takano Y; Jia Q; Yamaguchi M; Iwase A; Kuang Y; Minegishi T; Yamada T; Domen K; Kudo A
    Chem Commun (Camb); 2017 Jan; 53(3):629-632. PubMed ID: 27982147
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrathin CoO
    Du C; Wang J; Liu X; Yang J; Cao K; Wen Y; Chen R; Shan B
    Phys Chem Chem Phys; 2017 May; 19(21):14178-14184. PubMed ID: 28530305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the behavior of various cocatalysts on LaTaON
    Si W; Pergolesi D; Haydous F; Fluri A; Wokaun A; Lippert T
    Phys Chem Chem Phys; 2016 Dec; 19(1):656-662. PubMed ID: 27918033
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hetero-type dual photoanodes for unbiased solar water splitting with extended light harvesting.
    Kim JH; Jang JW; Jo YH; Abdi FF; Lee YH; van de Krol R; Lee JS
    Nat Commun; 2016 Dec; 7():13380. PubMed ID: 27966548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method.
    Ueda K; Minegishi T; Clune J; Nakabayashi M; Hisatomi T; Nishiyama H; Katayama M; Shibata N; Kubota J; Yamada T; Domen K
    J Am Chem Soc; 2015 Feb; 137(6):2227-30. PubMed ID: 25650748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Solar-to-hydrogen efficiency exceeding 2.5% achieved for overall water splitting with an all earth-abundant dual-photoelectrode.
    Ding C; Qin W; Wang N; Liu G; Wang Z; Yan P; Shi J; Li C
    Phys Chem Chem Phys; 2014 Aug; 16(29):15608-14. PubMed ID: 24956231
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improving BiVO4 photoanodes for solar water splitting through surface passivation.
    Liang Y; Messinger J
    Phys Chem Chem Phys; 2014 Jun; 16(24):12014-20. PubMed ID: 24845546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectrochemical properties of SrNbO2N photoanodes for water oxidation fabricated by the particle transfer method.
    Urabe H; Hisatomi T; Minegishi T; Kubota J; Domen K
    Faraday Discuss; 2014; 176():213-23. PubMed ID: 25406767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrothermal growth of highly oriented single crystalline Ta2O5 nanorod arrays and their conversion to Ta3N5 for efficient solar driven water splitting.
    Su Z; Wang L; Grigorescu S; Lee K; Schmuki P
    Chem Commun (Camb); 2014 Dec; 50(98):15561-4. PubMed ID: 25357012
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Hydrogen Evolution under Simulated Sunlight from Neutral Electrolytes on (ZnSe)
    Kaneko H; Minegishi T; Nakabayashi M; Shibata N; Domen K
    Angew Chem Int Ed Engl; 2016 Dec; 55(49):15329-15333. PubMed ID: 27860164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Beyond CoO
    Zhang H; Guo C; Ren J; Ning J; Zhong Y; Zhang Z; Hu Y
    Chem Commun (Camb); 2019 Dec; 55(93):14050-14053. PubMed ID: 31690915
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Template-free synthesis of Ta3N5 nanorod arrays for efficient photoelectrochemical water splitting.
    Zhen C; Wang L; Liu G; Lu GQ; Cheng HM
    Chem Commun (Camb); 2013 Apr; 49(29):3019-21. PubMed ID: 23463440
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Water splitting with silver chloride photoanodes and amorphous silicon solar cells.
    Currao A; Reddy VR; van Veen MK; Schropp RE; Calzaferri G
    Photochem Photobiol Sci; 2004; 3(11-12):1017-25. PubMed ID: 15570389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system.
    Walczak K; Chen Y; Karp C; Beeman JW; Shaner M; Spurgeon J; Sharp ID; Amashukeli X; West W; Jin J; Lewis NS; Xiang C
    ChemSusChem; 2015 Feb; 8(3):544-51. PubMed ID: 25581231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoelectrochemical reaction for the efficient production of hydrogen and high-value-added oxidation reagents.
    Fuku K; Wang N; Miseki Y; Funaki T; Sayama K
    ChemSusChem; 2015 May; 8(9):1593-600. PubMed ID: 25872474
    [TBL] [Abstract][Full Text] [Related]  

  • 16. WO3-enhanced TiO2 nanotube photoanodes for solar water splitting with simultaneous wastewater treatment.
    Reyes-Gil KR; Robinson DB
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12400-10. PubMed ID: 24195676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured WO3 /BiVO4 photoanodes for efficient photoelectrochemical water splitting.
    Pihosh Y; Turkevych I; Mawatari K; Asai T; Hisatomi T; Uemura J; Tosa M; Shimamura K; Kubota J; Domen K; Kitamori T
    Small; 2014 Sep; 10(18):3692-9. PubMed ID: 24863862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cobalt phosphate-modified barium-doped tantalum nitride nanorod photoanode with 1.5% solar energy conversion efficiency.
    Li Y; Zhang L; Torres-Pardo A; González-Calbet JM; Ma Y; Oleynikov P; Terasaki O; Asahina S; Shima M; Cha D; Zhao L; Takanabe K; Kubota J; Domen K
    Nat Commun; 2013; 4():2566. PubMed ID: 24089138
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cobalt-phosphate-assisted photoelectrochemical water oxidation by arrays of molybdenum-doped zinc oxide nanorods.
    Lin YG; Hsu YK; Chen YC; Lee BW; Hwang JS; Chen LC; Chen KH
    ChemSusChem; 2014 Sep; 7(9):2748-54. PubMed ID: 25044962
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Efficient photoelectrochemical water splitting over anodized p-type NiO porous films.
    Hu C; Chu K; Zhao Y; Teoh WY
    ACS Appl Mater Interfaces; 2014 Nov; 6(21):18558-68. PubMed ID: 25325731
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.