These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 27982156)

  • 1. An approach to utilize the artificial high power LED UV-A radiation in photoreactors for the degradation of methylene blue.
    Betancourt-Buitrago LA; Vásquez C; Veitia L; Ossa-Echeverry O; Rodriguez-Vallejo J; Barraza-Burgos J; Marriaga-Cabrales N; Machuca-Martínez F
    Photochem Photobiol Sci; 2017 Jan; 16(1):79-85. PubMed ID: 27982156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titamium oxide (TiO2) assisted photocatalytic degradation of methylene blue.
    Madhu GM; Raj MA; Pai KV
    J Environ Biol; 2009 Mar; 30(2):259-64. PubMed ID: 20121028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced oxidation degradation kinetics as a function of ultraviolet LED duty cycle.
    Duckworth K; Spencer M; Bates C; Miller ME; Almquist C; Grimaila M; Magnuson M; Willison S; Phillips R; Racz L
    Water Sci Technol; 2015; 71(9):1375-81. PubMed ID: 25945855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Degradation of methylene blue by radio frequency plasmas in water under ultraviolet irradiation.
    Maehara T; Nishiyama K; Onishi S; Mukasa S; Toyota H; Kuramoto M; Nomura S; Kawashima A
    J Hazard Mater; 2010 Feb; 174(1-3):473-6. PubMed ID: 19819072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process.
    Saquib M; Abu Tariq M; Haque MM; Muneer M
    J Environ Manage; 2008 Jul; 88(2):300-6. PubMed ID: 17490807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance of photocatalytic reactors using immobilized TiO2 film for the degradation of phenol and methylene blue dye present in water stream.
    Ling CM; Mohamed AR; Bhatia S
    Chemosphere; 2004 Nov; 57(7):547-54. PubMed ID: 15488916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of chloride anion in photocatalytic process.
    Yang SY; Chen YX; Lou LP; Wu XN
    J Environ Sci (China); 2005; 17(5):761-5. PubMed ID: 16312998
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled fabrication of porous double-walled TiO2 nanotubes via ultraviolet-assisted anodization.
    Ali G; Kim HJ; Kim JJ; Cho SO
    Nanoscale; 2014 Apr; 6(7):3632-7. PubMed ID: 24562049
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spectroscopic analyses of the photocatalytic behavior of nano titanium dioxide.
    Okasha A; Gomaa F; Elhaes H; Morsy M; El-Khodary S; Fakhry A; Ibrahim M
    Spectrochim Acta A Mol Biomol Spectrosc; 2015 Feb; 136 Pt B():504-9. PubMed ID: 25448951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coupling Adsorption-Photocatalytic Degradation of Methylene Blue and Maxilon Red.
    Farouq R
    J Fluoresc; 2022 Jul; 32(4):1381-1388. PubMed ID: 35384544
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Application of carbon-coated TiO2 for decomposition of methylene blue in a photocatalytic membrane reactor.
    Mozia S; Toyoda M; Inagaki M; Tryba B; Morawski AW
    J Hazard Mater; 2007 Feb; 140(1-2):369-75. PubMed ID: 17098362
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption and photocatalytic degradation of methylene blue over hydrogen-titanate nanofibres produced by a peroxide method.
    El Saliby I; Erdei L; Kim JH; Shon HK
    Water Res; 2013 Aug; 47(12):4115-25. PubMed ID: 23587264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Low cost UVA-LED as a radiation source for the photo-Fenton process: a new approach for micropollutant removal from urban wastewater.
    de la Obra I; Esteban García B; García Sánchez JL; Casas López JL; Sánchez Pérez JA
    Photochem Photobiol Sci; 2017 Jan; 16(1):72-78. PubMed ID: 27924329
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of mesoporous TiO2-curcumin nanoparticles for photocatalytic degradation of methylene blue dye.
    Abou-Gamra ZM; Ahmed MA
    J Photochem Photobiol B; 2016 Jul; 160():134-41. PubMed ID: 27107333
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance of titanium dioxide microcapsules as a photo-oxidation catalyst for decolourization of methylene blue.
    Supsakulchai A; Ma GH; Nagai M; Omi S
    J Microencapsul; 2003; 20(1):19-33. PubMed ID: 12519699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effectiveness of UV-based advanced oxidation processes for the remediation of hydrocarbon pollution in the groundwater: a laboratory investigation.
    Mascolo G; Ciannarella R; Balest L; Lopez A
    J Hazard Mater; 2008 Apr; 152(3):1138-45. PubMed ID: 17890002
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photodegradation of methyl tert-butyl ether (MTBE) by UV/H2O2 and UV/TiO2.
    Hu Q; Zhang C; Wang Z; Chen Y; Mao K; Zhang X; Xiong Y; Zhu M
    J Hazard Mater; 2008 Jun; 154(1-3):795-803. PubMed ID: 18082954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of aqueous methylene blue using an external loop airlift sonophotoreactor: Statistical analysis and optimization.
    Mohajerani M; Mehrvar M; Ein-Mozaffari F
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2016 Jul; 51(9):722-35. PubMed ID: 27128152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and evaluation of a UV LED Photocatalytic Reactor Using Anodized TiO2 Nanotubes.
    Ghosh JP; Achari G; Langford CH
    Water Environ Res; 2016 Aug; 88(8):785-91. PubMed ID: 26488573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanocomposite prepared from ZnS nanoparticles and molecular sieves nanoparticles by ion exchange method: characterization and its photocatalytic activity.
    Pourahmad A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():193-8. PubMed ID: 23261613
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.