BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

602 related articles for article (PubMed ID: 27982475)

  • 21. Reinforced 3D Composite Structures of γ-, α-Al
    Ramírez C; Belmonte M; Miranzo P; Osendi MI
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33921950
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrically Conductive Polymers for Additive Manufacturing.
    Yan Y; Han M; Jiang Y; Ng ELL; Zhang Y; Owh C; Song Q; Li P; Loh XJ; Chan BQY; Chan SY
    ACS Appl Mater Interfaces; 2024 Feb; 16(5):5337-5354. PubMed ID: 38284988
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Graphene inks for printed flexible electronics: Graphene dispersions, ink formulations, printing techniques and applications.
    Tran TS; Dutta NK; Choudhury NR
    Adv Colloid Interface Sci; 2018 Nov; 261():41-61. PubMed ID: 30318342
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Starch as edible ink in 3D printing for food applications: a review.
    Chen Y; McClements DJ; Peng X; Chen L; Xu Z; Meng M; Zhou X; Zhao J; Jin Z
    Crit Rev Food Sci Nutr; 2024; 64(2):456-471. PubMed ID: 35997260
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Additive Manufacturing of Conducting Polymers: Recent Advances, Challenges, and Opportunities.
    Criado-Gonzalez M; Dominguez-Alfaro A; Lopez-Larrea N; Alegret N; Mecerreyes D
    ACS Appl Polym Mater; 2021 Jun; 3(6):2865-2883. PubMed ID: 35673585
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 3D Printed Graphene and Graphene/Polymer Composites for Multifunctional Applications.
    Wu Y; An C; Guo Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629973
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional Inks for Printable Energy Storage Applications based on 2 D Materials.
    Wang L; Chen S; Shu T; Hu X
    ChemSusChem; 2020 Mar; 13(6):1330-1353. PubMed ID: 31373172
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene Oxide: An All-in-One Processing Additive for 3D Printing.
    García-Tuñón E; Feilden E; Zheng H; D'Elia E; Leong A; Saiz E
    ACS Appl Mater Interfaces; 2017 Sep; 9(38):32977-32989. PubMed ID: 28898053
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Printing for Electrochemical Energy Applications.
    Browne MP; Redondo E; Pumera M
    Chem Rev; 2020 Mar; 120(5):2783-2810. PubMed ID: 32049499
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Three-dimensional printing of freeform helical microstructures: a review.
    Farahani RD; Chizari K; Therriault D
    Nanoscale; 2014 Sep; 6(18):10470-85. PubMed ID: 25072812
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Recent advances in 3D printing properties of natural food gels: Application of innovative food additives.
    Sharma R; Chandra Nath P; Kumar Hazarika T; Ojha A; Kumar Nayak P; Sridhar K
    Food Chem; 2024 Jan; 432():137196. PubMed ID: 37659329
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent advances in lignin-based 3D printing materials: A mini-review.
    Wan Z; Zhang H; Niu M; Guo Y; Li H
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126660. PubMed ID: 37660847
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functionalized Carbon Materials for Electronic Devices: A Review.
    Kamran U; Heo YJ; Lee JW; Park SJ
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 30987220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recent Progress in Printed Photonic Devices: A Brief Review of Materials, Devices, and Applications.
    Al-Amri AM
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571128
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Laminated Object Manufacturing of 3D-Printed Laser-Induced Graphene Foams.
    Luong DX; Subramanian AK; Silva GAL; Yoon J; Cofer S; Yang K; Owuor PS; Wang T; Wang Z; Lou J; Ajayan PM; Tour JM
    Adv Mater; 2018 Jul; 30(28):e1707416. PubMed ID: 29845669
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Biomass 3D Printing: Principles, Materials, Post-Processing and Applications.
    Li Y; Ren X; Zhu L; Li C
    Polymers (Basel); 2023 Jun; 15(12):. PubMed ID: 37376338
    [TBL] [Abstract][Full Text] [Related]  

  • 37. 3D Printable Electrically Conductive Hydrogel Scaffolds for Biomedical Applications: A Review.
    Athukorala SS; Tran TS; Balu R; Truong VK; Chapman J; Dutta NK; Roy Choudhury N
    Polymers (Basel); 2021 Feb; 13(3):. PubMed ID: 33540900
    [TBL] [Abstract][Full Text] [Related]  

  • 38. New Promises and Opportunities in 3D Printable Inks Based on Coordination Compounds for the Creation of Objects with Multiple Applications.
    Maldonado N; Amo-Ochoa P
    Chemistry; 2021 Feb; 27(9):2887-2907. PubMed ID: 32894574
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D-printed patient-specific applications in orthopedics.
    Wong KC
    Orthop Res Rev; 2016; 8():57-66. PubMed ID: 30774470
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-Operando Study of Shape Retention and Microstructure Development in a Hydrolyzing Sol-Gel Ink during 3D-Printing.
    Torres Arango MA; Zhang Y; Li R; Doerk G; Fluerasu A; Wiegart L
    ACS Appl Mater Interfaces; 2020 Nov; 12(45):51044-51056. PubMed ID: 33138355
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 31.