These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 27982571)
1. Transformation of Iodide by Carbon Nanotube Activated Peroxydisulfate and Formation of Iodoorganic Compounds in the Presence of Natural Organic Matter. Guan C; Jiang J; Luo C; Pang S; Jiang C; Ma J; Jin Y; Li J Environ Sci Technol; 2017 Jan; 51(1):479-487. PubMed ID: 27982571 [TBL] [Abstract][Full Text] [Related]
2. Effect of iodide on transformation of phenolic compounds by nonradical activation of peroxydisulfate in the presence of carbon nanotube: Kinetics, impacting factors, and formation of iodinated aromatic products. Guan C; Jiang J; Pang S; Luo C; Yang Y; Ma J; Yu J; Zhao X Chemosphere; 2018 Oct; 208():559-568. PubMed ID: 29890494 [TBL] [Abstract][Full Text] [Related]
3. Rapid oxidation of iodide and hypoiodous acid with ferrate and no formation of iodoform and monoiodoacetic acid in the ferrate/I Wang X; Liu Y; Huang Z; Wang L; Wang Y; Li Y; Li J; Qi J; Ma J Water Res; 2018 Nov; 144():592-602. PubMed ID: 30092505 [TBL] [Abstract][Full Text] [Related]
4. Transformation of iodide by Fe(II) activated peroxydisulfate. Dong Z; Jiang C; Yang J; Zhang X; Dai W; Cai P J Hazard Mater; 2019 Jul; 373():519-526. PubMed ID: 30951996 [TBL] [Abstract][Full Text] [Related]
5. Oxidation Kinetics of Bromophenols by Nonradical Activation of Peroxydisulfate in the Presence of Carbon Nanotube and Formation of Brominated Polymeric Products. Guan C; Jiang J; Pang S; Luo C; Ma J; Zhou Y; Yang Y Environ Sci Technol; 2017 Sep; 51(18):10718-10728. PubMed ID: 28806069 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and Mechanistic Aspects of the Reactions of Iodide and Hypoiodous Acid with Permanganate: Oxidation and Disproportionation. Zhao X; Salhi E; Liu H; Ma J; von Gunten U Environ Sci Technol; 2016 Apr; 50(8):4358-65. PubMed ID: 27003721 [TBL] [Abstract][Full Text] [Related]
7. Iodate and iodo-trihalomethane formation during chlorination of iodide-containing waters: role of bromide. Criquet J; Allard S; Salhi E; Joll CA; Heitz A; von Gunten U Environ Sci Technol; 2012 Jul; 46(13):7350-7. PubMed ID: 22667818 [TBL] [Abstract][Full Text] [Related]
8. Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process. Wang L; Kong D; Ji Y; Lu J; Yin X; Zhou Q Chemosphere; 2017 Aug; 181():400-408. PubMed ID: 28458215 [TBL] [Abstract][Full Text] [Related]
9. Reactions of Ferrate(VI) with Iodide and Hypoiodous Acid: Kinetics, Pathways, and Implications for the Fate of Iodine during Water Treatment. Shin J; von Gunten U; Reckhow DA; Allard S; Lee Y Environ Sci Technol; 2018 Jul; 52(13):7458-7467. PubMed ID: 29856214 [TBL] [Abstract][Full Text] [Related]
10. Oxidation of iodide and iodine on birnessite (delta-MnO2) in the pH range 4-8. Allard S; von Gunten U; Sahli E; Nicolau R; Gallard H Water Res; 2009 Aug; 43(14):3417-26. PubMed ID: 19540547 [TBL] [Abstract][Full Text] [Related]
11. Chlorination of iodide-containing waters in the presence of CuO: formation of periodate. Liu C; Salhi E; Croué JP; von Gunten U Environ Sci Technol; 2014 Nov; 48(22):13173-80. PubMed ID: 25313794 [TBL] [Abstract][Full Text] [Related]
12. Insights into the Electron-Transfer Regime of Peroxydisulfate Activation on Carbon Nanotubes: The Role of Oxygen Functional Groups. Ren W; Xiong L; Nie G; Zhang H; Duan X; Wang S Environ Sci Technol; 2020 Jan; 54(2):1267-1275. PubMed ID: 31846314 [TBL] [Abstract][Full Text] [Related]
13. Fate and transformation of iodine species during Mn(VII)/sulfite treatment in iodide-containing water. Shao B; Zhu Y; Chen J; Lin Y; Guan X Water Environ Res; 2022; 94(9):e10788. PubMed ID: 36149084 [TBL] [Abstract][Full Text] [Related]
14. Activation of Peroxydisulfate on Carbon Nanotubes: Electron-Transfer Mechanism. Ren W; Xiong L; Yuan X; Yu Z; Zhang H; Duan X; Wang S Environ Sci Technol; 2019 Dec; 53(24):14595-14603. PubMed ID: 31721570 [TBL] [Abstract][Full Text] [Related]
15. Formation of iodinated organic compounds by oxidation of iodide-containing waters with manganese dioxide. Gallard H; Allard S; Nicolau R; von Gunten U; Croué JP Environ Sci Technol; 2009 Sep; 43(18):7003-9. PubMed ID: 19806734 [TBL] [Abstract][Full Text] [Related]
16. Nonradical oxidation from electrochemical activation of peroxydisulfate at Ti/Pt anode: Efficiency, mechanism and influencing factors. Song H; Yan L; Ma J; Jiang J; Cai G; Zhang W; Zhang Z; Zhang J; Yang T Water Res; 2017 Jun; 116():182-193. PubMed ID: 28340416 [TBL] [Abstract][Full Text] [Related]
17. Reactions of hypoiodous acid with model compounds and the formation of iodoform in absence/presence of permanganate. Zhao X; Ma J; von Gunten U Water Res; 2017 Aug; 119():126-135. PubMed ID: 28454008 [TBL] [Abstract][Full Text] [Related]
18. Degradation of aniline by electrochemical activation of peroxydisulfate at MWCNT cathode: The proofed concept of nonradical oxidation process. Nie C; Ao Z; Duan X; Wang C; Wang S; An T Chemosphere; 2018 Sep; 206():432-438. PubMed ID: 29758500 [TBL] [Abstract][Full Text] [Related]
19. Revisiting iodide species transformation in peracetic acid oxidation: unexpected role of radicals in micropollutants decontamination and iodate formation. Liu T; Li N; Xiao S; Chen J; Ji R; Shi Y; Zhou X; Zhang Y Water Res; 2024 Nov; 265():122270. PubMed ID: 39167976 [TBL] [Abstract][Full Text] [Related]
20. Removal of iodide from water by chlorination and subsequent adsorption on powdered activated carbon. Ikari M; Matsui Y; Suzuki Y; Matsushita T; Shirasaki N Water Res; 2015 Jan; 68():227-37. PubMed ID: 25462731 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]