These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 27982576)

  • 1. Phosphate Changes Effect of Humic Acids on TiO
    Long M; Brame J; Qin F; Bao J; Li Q; Alvarez PJ
    Environ Sci Technol; 2017 Jan; 51(1):514-521. PubMed ID: 27982576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of humic acids with different polarities on the photocatalytic activity of nano-TiO
    Wu W; Shan G; Xiang Q; Zhang Y; Yi S; Zhu L
    Water Res; 2017 Oct; 122():78-85. PubMed ID: 28595123
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of humic acid source on humic acid adsorption onto titanium dioxide nanoparticles.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Feb; 470-471():92-8. PubMed ID: 24140685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photocatalytic removal of organic phosphate esters by TiO
    Tang T; Lu G; Wang W; Wang R; Huang K; Qiu Z; Tao X; Dang Z
    Chemosphere; 2018 Sep; 206():26-32. PubMed ID: 29723749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of humic acid with nanosized inorganic oxides.
    Yang K; Lin D; Xing B
    Langmuir; 2009 Apr; 25(6):3571-6. PubMed ID: 19708146
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sorption of phenanthrene by humic acid-coated nanosized TiO2 and ZnO.
    Yang K; Xing B
    Environ Sci Technol; 2009 Mar; 43(6):1845-51. PubMed ID: 19368181
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergy between surface adsorption and photocatalysis during degradation of humic acid on TiO2/activated carbon composites.
    Xue G; Liu H; Chen Q; Hills C; Tyrer M; Innocent F
    J Hazard Mater; 2011 Feb; 186(1):765-72. PubMed ID: 21163573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of natural organic matter changes from Lake Hohloh by three-dimensional excitation-emission matrix fluorescence spectroscopy during TiO(2)/UV process.
    Valencia S; Marín JM; Restrepo G; Frimmel FH
    Water Res; 2014 Mar; 51():124-33. PubMed ID: 24429099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fate of sulfamerazine by synchronous adsorption and photocatalysis dependent on natural organic matter properties.
    Zhou Z; Zhang R; Yang Y; Li X; Ren J
    Environ Technol; 2024 Jul; 45(18):3635-3647. PubMed ID: 37337954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Non-selective oxidation of humic acid in heterogeneous aqueous systems: a comparative investigation on the effect of clay minerals.
    Kavurmaci SS; Bekbolet M
    Environ Technol; 2014; 35(17-20):2389-400. PubMed ID: 25145193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two-dimensional correlation spectroscopic analysis on the interaction between humic acids and TiO2 nanoparticles.
    Chen W; Qian C; Liu XY; Yu HQ
    Environ Sci Technol; 2014 Oct; 48(19):11119-26. PubMed ID: 25222835
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adsorbability and photocatalytic degradability of humic substances in water on Ti-modified silica.
    Moriguchi T; Tahara M; Yaguchi K
    J Colloid Interface Sci; 2006 May; 297(2):678-86. PubMed ID: 16330037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Humic nanoparticles at the oxide-water interface: interactions with phosphate ion adsorption.
    Weng L; Van Riemsdijk WH; Hiemstra T
    Environ Sci Technol; 2008 Dec; 42(23):8747-52. PubMed ID: 19192792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of Cr(VI) and humic acid by using TiO2 photocatalysis.
    Yang JK; Lee SM
    Chemosphere; 2006 Jun; 63(10):1677-84. PubMed ID: 16325231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluations of the TiO2/simulated solar UV degradations of XAD fractions of natural organic matter from a bog lake using size-exclusion chromatography.
    Valencia S; Marín JM; Restrepo G; Frimmel FH
    Water Res; 2013 Sep; 47(14):5130-8. PubMed ID: 23863374
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen production from natural organic matter via cascading oxic-anoxic photocatalytic processes: An energy recovering water purification technology.
    Huang G; Xiao Z; Zhen W; Fan Y; Zeng C; Li C; Liu S; Wong PK
    Water Res; 2020 May; 175():115684. PubMed ID: 32171099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Competitive adsorption of fluoride and natural organic matter onto activated alumina.
    Mouelhi M; Giraudet S; Amrane A; Hamrouni B
    Environ Technol; 2016 Sep; 37(18):2326-36. PubMed ID: 26849225
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of humic acid on visible light photocatalytic inactivation of bacteriophage f2 with electrospinning Cu-TiO
    Cheng R; Xia JC; Shen LJ; Shen ZP; Shi L; Zheng X; Zheng JZ
    Environ Sci Pollut Res Int; 2024 Apr; 31(20):30212-30227. PubMed ID: 38602633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive adsorption of organic matter with phosphate on aluminum hydroxide.
    Guan XH; Shang C; Chen GH
    J Colloid Interface Sci; 2006 Apr; 296(1):51-8. PubMed ID: 16236301
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.