BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 27982725)

  • 41. Molecular mechanisms of osteoporotic hip fractures in elderly women.
    Föger-Samwald U; Vekszler G; Hörz-Schuch E; Salem S; Wipperich M; Ritschl P; Mousavi M; Pietschmann P
    Exp Gerontol; 2016 Jan; 73():49-58. PubMed ID: 26608808
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Epigenetic Signatures at the RUNX2-P1 and Sp7 Gene Promoters Control Osteogenic Lineage Commitment of Umbilical Cord-Derived Mesenchymal Stem Cells.
    Sepulveda H; Aguilar R; Prieto CP; Bustos F; Aedo S; Lattus J; van Zundert B; Palma V; Montecino M
    J Cell Physiol; 2017 Sep; 232(9):2519-2527. PubMed ID: 27689934
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Bone healing capacity in patients undergoing total hip arthroplasty].
    Kučera T; Soukup T; Krs O; Urban K; Sponer P
    Acta Chir Orthop Traumatol Cech; 2012; 79(1):52-8. PubMed ID: 22405550
    [TBL] [Abstract][Full Text] [Related]  

  • 44. In vitro characterization of bone marrow stromal cells from osteoarthritic donors.
    Stiehler M; Rauh J; Bünger C; Jacobi A; Vater C; Schildberg T; Liebers C; Günther KP; Bretschneider H
    Stem Cell Res; 2016 May; 16(3):782-9. PubMed ID: 27155399
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Shared genetic control of expression and methylation in peripheral blood.
    Shakhbazov K; Powell JE; Hemani G; Henders AK; Martin NG; Visscher PM; Montgomery GW; McRae AF
    BMC Genomics; 2016 Apr; 17():278. PubMed ID: 27048375
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epigenetic Mechanisms Regulating Mesenchymal Stem Cell Differentiation.
    Pérez-Campo FM; Riancho JA
    Curr Genomics; 2015 Dec; 16(6):368-83. PubMed ID: 27019612
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Systemic Mesenchymal Stromal Cell Transplantation Prevents Functional Bone Loss in a Mouse Model of Age-Related Osteoporosis.
    Kiernan J; Hu S; Grynpas MD; Davies JE; Stanford WL
    Stem Cells Transl Med; 2016 May; 5(5):683-93. PubMed ID: 26987353
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Genome-wide DNA methylation profile implicates potential cartilage regeneration at the late stage of knee osteoarthritis.
    Zhang Y; Fukui N; Yahata M; Katsuragawa Y; Tashiro T; Ikegawa S; Lee MT
    Osteoarthritis Cartilage; 2016 May; 24(5):835-43. PubMed ID: 26746145
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Genome-Wide DNA Methylation Study Identifies Significant Epigenomic Changes in Osteoarthritic Subchondral Bone and Similarity to Overlying Cartilage.
    Jeffries MA; Donica M; Baker LW; Stevenson ME; Annan AC; Beth Humphrey M; James JA; Sawalha AH
    Arthritis Rheumatol; 2016 Jun; 68(6):1403-14. PubMed ID: 26713865
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epigenetic Control of the Bone-master Runx2 Gene during Osteoblast-lineage Commitment by the Histone Demethylase JARID1B/KDM5B.
    Rojas A; Aguilar R; Henriquez B; Lian JB; Stein JL; Stein GS; van Wijnen AJ; van Zundert B; Allende ML; Montecino M
    J Biol Chem; 2015 Nov; 290(47):28329-28342. PubMed ID: 26453309
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Comprehensive Overview of Skeletal Phenotypes Associated with Alterations in Wnt/β-catenin Signaling in Humans and Mice.
    Maupin KA; Droscha CJ; Williams BO
    Bone Res; 2013 Mar; 1(1):27-71. PubMed ID: 26273492
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mesenchymal stem cell aging: Mechanisms and influences on skeletal and non-skeletal tissues.
    Liu H; Xia X; Li B
    Exp Biol Med (Maywood); 2015 Aug; 240(8):1099-106. PubMed ID: 26088863
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Exposure to a youthful circulaton rejuvenates bone repair through modulation of β-catenin.
    Baht GS; Silkstone D; Vi L; Nadesan P; Amani Y; Whetstone H; Wei Q; Alman BA
    Nat Commun; 2015 May; 6():7131. PubMed ID: 25988592
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The p53/miR-17/Smurf1 pathway mediates skeletal deformities in an age-related model via inhibiting the function of mesenchymal stem cells.
    Liu W; Qi M; Konermann A; Zhang L; Jin F; Jin Y
    Aging (Albany NY); 2015 Mar; 7(3):205-18. PubMed ID: 25855145
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Global transcriptional profiling using RNA sequencing and DNA methylation patterns in highly enriched mesenchymal cells from young versus elderly women.
    Roforth MM; Farr JN; Fujita K; McCready LK; Atkinson EJ; Therneau TM; Cunningham JM; Drake MT; Monroe DG; Khosla S
    Bone; 2015 Jul; 76():49-57. PubMed ID: 25827254
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Osteoporosis-associated alteration in the signalling status of BMP-2 in human MSCs under adipogenic conditions.
    Donoso O; Pino AM; Seitz G; Osses N; Rodríguez JP
    J Cell Biochem; 2015 Jul; 116(7):1267-77. PubMed ID: 25640452
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Role and regulation of RUNX2 in osteogenesis.
    Bruderer M; Richards RG; Alini M; Stoddart MJ
    Eur Cell Mater; 2014 Oct; 28():269-86. PubMed ID: 25340806
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Comprehensive analysis of DNA methylation data with RnBeads.
    Assenov Y; Müller F; Lutsik P; Walter J; Lengauer T; Bock C
    Nat Methods; 2014 Nov; 11(11):1138-1140. PubMed ID: 25262207
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeted delivery of mesenchymal stem cells to the bone.
    Yao W; Lane NE
    Bone; 2015 Jan; 70():62-5. PubMed ID: 25173607
    [TBL] [Abstract][Full Text] [Related]  

  • 60.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.