These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

388 related articles for article (PubMed ID: 27983586)

  • 41. Diversity of algae and their biotechnological potential.
    Gilmour DJ
    Adv Microb Physiol; 2023; 82():301-321. PubMed ID: 36948657
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genetic manipulation of microalgae for the production of bioproducts.
    Vazquez-Villegas P; Torres-Acosta MA; Garcia-Echauri SA; Aguilar-Yanez JM; Rito-Palomares M; Ruiz-Ruiz F
    Front Biosci (Elite Ed); 2018 Jan; 10(2):254-275. PubMed ID: 28930617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Microalgae biofuel potentials (review).
    Ghasemi Y; Rasoul-Amini S; Naseri AT; Montazeri-Najafabady N; Mobasher MA; Dabbagh F
    Prikl Biokhim Mikrobiol; 2012; 48(2):150-68. PubMed ID: 22586908
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Functional ingredients from microalgae.
    Buono S; Langellotti AL; Martello A; Rinna F; Fogliano V
    Food Funct; 2014 Aug; 5(8):1669-85. PubMed ID: 24957182
    [TBL] [Abstract][Full Text] [Related]  

  • 45. New trends in biotechnological applications of photosynthetic microorganisms.
    Dawiec-Liśniewska A; Podstawczyk D; Bastrzyk A; Czuba K; Pacyna-Iwanicka K; Okoro OV; Shavandi A
    Biotechnol Adv; 2022 Oct; 59():107988. PubMed ID: 35605757
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Optimization of light use efficiency for biofuel production in algae.
    Simionato D; Basso S; Giacometti GM; Morosinotto T
    Biophys Chem; 2013 Dec; 182():71-8. PubMed ID: 23876487
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Flashing light in microalgae biotechnology.
    Abu-Ghosh S; Fixler D; Dubinsky Z; Iluz D
    Bioresour Technol; 2016 Mar; 203():357-63. PubMed ID: 26747205
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Diurnal changes in the xanthophyll cycle pigments of freshwater algae correlate with the environmental hydrogen peroxide concentration rather than non-photochemical quenching.
    Roach T; Miller R; Aigner S; Kranner I
    Ann Bot; 2015 Sep; 116(4):519-27. PubMed ID: 25878139
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Continuous background light significantly increases flashing-light enhancement of photosynthesis and growth of microalgae.
    Abu-Ghosh S; Fixler D; Dubinsky Z; Iluz D
    Bioresour Technol; 2015; 187():144-148. PubMed ID: 25846184
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Innovative Alternative Technologies to Extract Carotenoids from Microalgae and Seaweeds.
    Poojary MM; Barba FJ; Aliakbarian B; Donsì F; Pataro G; Dias DA; Juliano P
    Mar Drugs; 2016 Nov; 14(11):. PubMed ID: 27879659
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Improving polyglucan production in cyanobacteria and microalgae via cultivation design and metabolic engineering.
    Aikawa S; Ho SH; Nakanishi A; Chang JS; Hasunuma T; Kondo A
    Biotechnol J; 2015 Jun; 10(6):886-98. PubMed ID: 25867926
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Potential of sponges and microalgae for marine biotechnology.
    Wijffels RH
    Trends Biotechnol; 2008 Jan; 26(1):26-31. PubMed ID: 18037175
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Growth properties and hydrogen yield in green microalga Parachlorella kessleri: Effects of low-intensity electromagnetic irradiation at the frequencies of 51.8 GHz and 53.0 GHz.
    Manoyan J; Gabrielyan L; Kalantaryan V; Trchounian A
    J Photochem Photobiol B; 2020 Oct; 211():112016. PubMed ID: 32920483
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Nanotechnology and chemical engineering as a tool to bioprocess microalgae for its applications in therapeutics and bioresource management.
    Khalid M
    Crit Rev Biotechnol; 2020 Feb; 40(1):46-63. PubMed ID: 31645143
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential.
    Subashchandrabose SR; Ramakrishnan B; Megharaj M; Venkateswarlu K; Naidu R
    Biotechnol Adv; 2011; 29(6):896-907. PubMed ID: 21801829
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Genetic Engineering of Microalgae for Secondary Metabolite Production: Recent Developments, Challenges, and Future Prospects.
    Sreenikethanam A; Raj S; J RB; Gugulothu P; Bajhaiya AK
    Front Bioeng Biotechnol; 2022; 10():836056. PubMed ID: 35402414
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Marine algae-derived bioactive peptides for human nutrition and health.
    Fan X; Bai L; Zhu L; Yang L; Zhang X
    J Agric Food Chem; 2014 Sep; 62(38):9211-22. PubMed ID: 25179496
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microalgae as sustainable food and feed sources for animals and humans - Biotechnological and environmental aspects.
    Kusmayadi A; Leong YK; Yen HW; Huang CY; Chang JS
    Chemosphere; 2021 May; 271():129800. PubMed ID: 33736224
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Marine Microalgae: Promising Source for New Bioactive Compounds.
    de Vera CR; Díaz Crespín G; Hernández Daranas A; Montalvão Looga S; Lillsunde KE; Tammela P; Perälä M; Hongisto V; Virtanen J; Rischer H; Muller CD; Norte M; Fernández JJ; Souto ML
    Mar Drugs; 2018 Sep; 16(9):. PubMed ID: 30200664
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Biological potential of microalgae in China for biorefinery-based production of biofuels and high value compounds.
    Li J; Liu Y; Cheng JJ; Mos M; Daroch M
    N Biotechnol; 2015 Dec; 32(6):588-96. PubMed ID: 25686716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.