BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 27983626)

  • 1. Design and Optimization of a Hybrid-Driven Waist Rehabilitation Robot.
    Zi B; Yin G; Zhang D
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Lower Limb Rehabilitation Assistance Training Robot System Driven by an Innovative Pneumatic Artificial Muscle System.
    Tsai TC; Chiang MH
    Soft Robot; 2023 Feb; 10(1):1-16. PubMed ID: 35196171
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SafeNet: a methodology for integrating general-purpose unsafe devices in safe-robot rehabilitation systems.
    Vicentini F; Pedrocchi N; Malosio M; Molinari Tosatti L
    Comput Methods Programs Biomed; 2014 Sep; 116(2):156-68. PubMed ID: 24750989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kinematics optimization and static analysis of a modular continuum robot used for minimally invasive surgery.
    Qi F; Ju F; Bai DM; Chen B
    Proc Inst Mech Eng H; 2018 Feb; 232(2):135-148. PubMed ID: 29228866
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control system design of a 3-DOF upper limbs rehabilitation robot.
    Denève A; Moughamir S; Afilal L; Zaytoon J
    Comput Methods Programs Biomed; 2008 Feb; 89(2):202-14. PubMed ID: 17881080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a 3D parallel mechanism robot arm with three vertical-axial pneumatic actuators combined with a stereo vision system.
    Chiang MH; Lin HT
    Sensors (Basel); 2011; 11(12):11476-94. PubMed ID: 22247676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlinear disturbance observer based sliding mode control of a cable-driven rehabilitation robot.
    Niu J; Yang Q; Chen G; Song R
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():664-669. PubMed ID: 28813896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design and testing of a soft parallel robot based on pneumatic artificial muscles for wrist rehabilitation.
    Wang Y; Xu Q
    Sci Rep; 2021 Jan; 11(1):1273. PubMed ID: 33446771
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Multi-Mode Rehabilitation Robot With Magnetorheological Actuators Based on Human Motion Intention Estimation.
    Xu J; Li Y; Xu L; Peng C; Chen S; Liu J; Xu C; Cheng G; Xu H; Liu Y; Chen J
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2216-2228. PubMed ID: 31443038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hybrid position and orientation tracking for a passive rehabilitation table-top robot.
    Wojewoda KK; Culmer PR; Gallagher JF; Jackson AE; Levesley MC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():702-707. PubMed ID: 28813902
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Review on design and control aspects of ankle rehabilitation robots.
    Jamwal PK; Hussain S; Xie SQ
    Disabil Rehabil Assist Technol; 2015 Mar; 10(2):93-101. PubMed ID: 24320195
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects.
    Miao Q; Zhang M; Wang C; Li H
    J Healthc Eng; 2018; 2018():1534247. PubMed ID: 29736230
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Design and Analysis of a Flexible, Elastic, and Rope-Driven Parallel Mechanism for Wrist Rehabilitation.
    Pang Z; Wang T; Yu J; Liu S; Zhang X; Jiang D
    Appl Bionics Biomech; 2020; 2020():8841400. PubMed ID: 33273965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An intrinsically safe mechanism for physically coupling humans with robots.
    O'Neill G; Patel H; Artemiadis P
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650510. PubMed ID: 24187325
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using the Kinect to limit abnormal kinematics and compensation strategies during therapy with end effector robots.
    Brokaw EB; Lum PS; Cooper RA; Brewer BR
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650384. PubMed ID: 24187203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Design and analysis of a novel fall prevention device for lower limbs rehabilitation robot.
    Ji J; Guo S; Song T; Xi FJ
    J Back Musculoskelet Rehabil; 2018 Feb; 31(1):169-176. PubMed ID: 28869436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Kinematics Modeling and Analysis of Central-driven Robot for Upper Limb Rehabilitation after Stroke].
    Yi J; Yu H; Zhang Y; Hu X; Shi P
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2015 Dec; 32(6):1196-201. PubMed ID: 27079086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.
    Wilkening A; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650354. PubMed ID: 24187173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and control of a pneumatic musculoskeletal biped robot.
    Zang X; Liu Y; Liu X; Zhao J
    Technol Health Care; 2016 Apr; 24 Suppl 2():S443-54. PubMed ID: 27163303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-iterative geometric approach for inverse kinematics of redundant lead-module in a radiosurgical snake-like robot.
    Omisore OM; Han S; Ren L; Zhang N; Ivanov K; Elazab A; Wang L
    Biomed Eng Online; 2017 Aug; 16(1):93. PubMed ID: 28764713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.