These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27983655)

  • 1. Fabrication of a Horizontal and a Vertical Large Surface Area Nanogap Electrochemical Sensor.
    Hammond JL; Rosamond MC; Sivaraya S; Marken F; Estrela P
    Sensors (Basel); 2016 Dec; 16(12):. PubMed ID: 27983655
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A label-free aptamer-based nanogap capacitive biosensor with greatly diminished electrode polarization effects.
    Ghobaei Namhil Z; Kemp C; Verrelli E; Iles A; Pamme N; Adawi AM; Kemp NT
    Phys Chem Chem Phys; 2019 Jan; 21(2):681-691. PubMed ID: 30543220
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dielectrophoretic trapping of DNA-coated gold nanoparticles on silicon based vertical nanogap devices.
    Strobel S; Sperling RA; Fenk B; Parak WJ; Tornow M
    Phys Chem Chem Phys; 2011 Jun; 13(21):9973-7. PubMed ID: 21387021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical Amplification in Side-by-Side Attoliter Nanogap Transducers.
    Zafarani HR; Mathwig K; Sudhölter EJR; Rassaei L
    ACS Sens; 2017 Jun; 2(6):724-728. PubMed ID: 28670622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Theoretical and experimental study towards a nanogap dielectric biosensor.
    Yi M; Jeong KH; Lee LP
    Biosens Bioelectron; 2005 Jan; 20(7):1320-6. PubMed ID: 15590285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoscale biomemory composed of recombinant azurin on a nanogap electrode.
    Chung YH; Lee T; Park HJ; Yun WS; Min J; Choi JW
    Nanotechnology; 2013 Sep; 24(36):365301. PubMed ID: 23942185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast response hydrogen gas sensor based on Pd/Cr nanogaps fabricated by a single-step bending deformation.
    Hassan K; Tung TT; Yap PL; Nine MJ; Kim HC; Losic D
    Anal Chim Acta; 2020 Nov; 1138():49-58. PubMed ID: 33161984
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High precision fabrication and positioning of nanoelectrodes in a nanopore.
    Ivanov AP; Freedman KJ; Kim MJ; Albrecht T; Edel JB
    ACS Nano; 2014 Feb; 8(2):1940-8. PubMed ID: 24446951
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanogap-Based Electrochemical Measurements at Double-Carbon-Fiber Ultramicroelectrodes.
    Pathirathna P; Balla RJ; Amemiya S
    Anal Chem; 2018 Oct; 90(20):11746-11750. PubMed ID: 30251536
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale Channel Gate-Tunable Diodes Obtained by Asymmetric Contact and Adhesion Lithography on Fluoropolymers.
    Kim M; Kim S; Yoo H
    Small; 2023 Aug; 19(35):e2208144. PubMed ID: 37096940
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-Throughput Fabrication of Triangular Nanogap Arrays for Surface-Enhanced Raman Spectroscopy.
    Luo S; Mancini A; Wang F; Liu J; Maier SA; de Mello JC
    ACS Nano; 2022 May; 16(5):7438-7447. PubMed ID: 35381178
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Scalable Fabrication of Metallic Nanogaps at the Sub-10 nm Level.
    Luo S; Hoff BH; Maier SA; de Mello JC
    Adv Sci (Weinh); 2021 Dec; 8(24):e2102756. PubMed ID: 34719889
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold nanogap impedimetric biosensor for precise and selective
    Dhahi TS; Adam T; Gopinath SCB; Hashim U
    3 Biotech; 2022 Nov; 12(11):299. PubMed ID: 36276457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scalable Manufacturing of Nanogaps.
    Dubois V; Bleiker SJ; Stemme G; Niklaus F
    Adv Mater; 2018 Nov; 30(46):e1801124. PubMed ID: 30156331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Robust nanogap electrodes by self-terminating electroless gold plating.
    Serdio V VM; Azuma Y; Takeshita S; Muraki T; Teranishi T; Majima Y
    Nanoscale; 2012 Nov; 4(22):7161-7. PubMed ID: 23069983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Silicon based nanogap device for studying electrical transport phenomena in molecule-nanoparticle hybrids.
    Strobel S; Hernández RM; Hansen AG; Tornow M
    J Phys Condens Matter; 2008 Sep; 20(37):374126. PubMed ID: 21694433
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanolithography using thermal stresses.
    Purohit G; Deepak ; Katiyar M
    RSC Adv; 2018 Jan; 8(9):4928-4936. PubMed ID: 35539559
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of Rev peptides with impedance-sensors--comparison of device-geometries.
    Schlecht U; Malavé A; Gronewold TM; Tewes M; Löhndorf M
    Biosens Bioelectron; 2007 Apr; 22(9-10):2337-40. PubMed ID: 16901685
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of segmented gold nanorods with nanogaps by the electrochemical wet etching technique for single-electron transistor applications.
    Van Hoang N; Kumar S; Kim GH
    Nanotechnology; 2009 Mar; 20(12):125607. PubMed ID: 19420476
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Ultraviolet Copper(I) Thiocyanate (CuSCN) Photodetectors Based on Coplanar Nanogap Electrodes Fabricated via Adhesion Lithography.
    Wyatt-Moon G; Georgiadou DG; Semple J; Anthopoulos TD
    ACS Appl Mater Interfaces; 2017 Dec; 9(48):41965-41972. PubMed ID: 29172422
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.