These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 27983676)

  • 21. Estimation of the center of rotation using wearable magneto-inertial sensors.
    Crabolu M; Pani D; Raffo L; Cereatti A
    J Biomech; 2016 Dec; 49(16):3928-3933. PubMed ID: 27890536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Estimating body segment orientation by applying inertial and magnetic sensing near ferromagnetic materials.
    Roetenberg D; Baten CT; Veltink PH
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):469-71. PubMed ID: 17894280
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Inertial and time-of-arrival ranging sensor fusion.
    Vasilyev P; Pearson S; El-Gohary M; Aboy M; McNames J
    Gait Posture; 2017 May; 54():1-7. PubMed ID: 28242567
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rider trunk and bicycle pose estimation with fusion of force/inertial sensors.
    Zhang Y; Chen K; Yi J
    IEEE Trans Biomed Eng; 2013 Sep; 60(9):2541-51. PubMed ID: 23629841
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upper limb portable motion analysis system based on inertial technology for neurorehabilitation purposes.
    Pérez R; Costa Ú; Torrent M; Solana J; Opisso E; Cáceres C; Tormos JM; Medina J; Gómez EJ
    Sensors (Basel); 2010; 10(12):10733-51. PubMed ID: 22163496
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Estimating Three-Dimensional Body Orientation Based on an Improved Complementary Filter for Human Motion Tracking.
    Yi C; Ma J; Guo H; Han J; Gao H; Jiang F; Yang C
    Sensors (Basel); 2018 Nov; 18(11):. PubMed ID: 30400359
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Human pose recovery for rehabilitation using ambulatory sensors.
    Lin JF; Kulić D
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():4799-802. PubMed ID: 24110808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Markerless motion capture using appearance and inertial data.
    Wong C; Zhang Z; Lo B; Yang GZ
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6907-10. PubMed ID: 25571584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Accuracy and repeatability of single-pose calibration of inertial measurement units for whole-body motion analysis.
    Robert-Lachaine X; Mecheri H; Larue C; Plamondon A
    Gait Posture; 2017 May; 54():80-86. PubMed ID: 28279850
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluating the use of machine learning in the assessment of joint angle using a single inertial sensor.
    Argent R; Drummond S; Remus A; O'Reilly M; Caulfield B
    J Rehabil Assist Technol Eng; 2019; 6():2055668319868544. PubMed ID: 31452927
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An Exploration of Machine-Learning Estimation of Ground Reaction Force from Wearable Sensor Data.
    Hendry D; Leadbetter R; McKee K; Hopper L; Wild C; O'Sullivan P; Straker L; Campbell A
    Sensors (Basel); 2020 Jan; 20(3):. PubMed ID: 32013212
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fusion Poser: 3D Human Pose Estimation Using Sparse IMUs and Head Trackers in Real Time.
    Kim M; Lee S
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808342
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Machine Learning Improvements to Human Motion Tracking with IMUs.
    Ribeiro PMS; Matos AC; Santos PH; Cardoso JS
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33182286
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Learning the Orientation of a Loosely-Fixed Wearable IMU Relative to the Body Improves the Recognition Rate of Human Postures and Activities.
    Del Rosario MB; Lovell NH; Redmond SJ
    Sensors (Basel); 2019 Jun; 19(13):. PubMed ID: 31248016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Estimation of IMU and MARG orientation using a gradient descent algorithm.
    Madgwick SO; Harrison AJ; Vaidyanathan A
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975346. PubMed ID: 22275550
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Allumo: Preprocessing and Calibration Software for Wearable Accelerometers Used in Posture Tracking.
    Fortin-Côté A; Roy JS; Bouyer L; Jackson P; Campeau-Lecours A
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31906122
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Adherence monitoring of rehabilitation exercise with inertial sensors: A clinical validation study.
    Bavan L; Surmacz K; Beard D; Mellon S; Rees J
    Gait Posture; 2019 May; 70():211-217. PubMed ID: 30903993
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitoring Methods of Human Body Joints: State-of-the-Art and Research Challenges.
    Faisal AI; Majumder S; Mondal T; Cowan D; Naseh S; Deen MJ
    Sensors (Basel); 2019 Jun; 19(11):. PubMed ID: 31185629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Shoulder physiotherapy exercise recognition: machine learning the inertial signals from a smartwatch.
    Burns DM; Leung N; Hardisty M; Whyne CM; Henry P; McLachlin S
    Physiol Meas; 2018 Jul; 39(7):075007. PubMed ID: 29952759
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Training Data Selection and Optimal Sensor Placement for Deep-Learning-Based Sparse Inertial Sensor Human Posture Reconstruction.
    Zheng Z; Ma H; Yan W; Liu H; Yang Z
    Entropy (Basel); 2021 May; 23(5):. PubMed ID: 34068635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.