These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 27983778)
1. Facile Synthesis of Mesocrystalline SnO Ma W; Zhang F; Li L; Chen S; Qi L; Liu H; Bai Y ACS Appl Mater Interfaces; 2016 Dec; 8(51):35099-35105. PubMed ID: 27983778 [TBL] [Abstract][Full Text] [Related]
2. Organic molecule-assisted synthesis of Fe Li JY; Long XY; Sheng D; Lian HZ Talanta; 2020 Feb; 208():120437. PubMed ID: 31816680 [TBL] [Abstract][Full Text] [Related]
3. Highly selective enrichment of phosphopeptides with high-index facets exposed octahedral tin dioxide nanoparticles for mass spectrometric analysis. Ma R; Hu J; Cai Z; Ju H Talanta; 2014 Feb; 119():452-7. PubMed ID: 24401440 [TBL] [Abstract][Full Text] [Related]
4. Multifunctional ZrO(2) nanoparticles and ZrO(2)-SiO (2) nanorods for improved MALDI-MS analysis of cyclodextrins, peptides, and phosphoproteins. Kailasa SK; Wu HF Anal Bioanal Chem; 2010 Feb; 396(3):1115-25. PubMed ID: 20091153 [TBL] [Abstract][Full Text] [Related]
5. GO-META-TiO Zhao S; Wang S; Yan Y; Wang L; Guo G; Wang X Talanta; 2019 Jan; 192():360-367. PubMed ID: 30348403 [TBL] [Abstract][Full Text] [Related]
6. In situ synthesis of a novel metal oxide affinity chromatography affinity probe for the selective enrichment of low-abundance phosphopeptides. Wang B; Wu H; Yan Y; Tang K; Ding CF Rapid Commun Mass Spectrom; 2020 Oct; 34(20):e8881. PubMed ID: 32638431 [TBL] [Abstract][Full Text] [Related]
7. Selective enrichment of phosphopeptides by titania nanoparticles coated magnetic carbon nanotubes. Yan Y; Zheng Z; Deng C; Zhang X; Yang P Talanta; 2014 Jan; 118():14-20. PubMed ID: 24274265 [TBL] [Abstract][Full Text] [Related]
8. Ultrasensitive enrichment of phosphopeptides with Ti(4+) immobilized SiO2 graphene-like multilayer nanosheets. Xu D; Gao M; Deng C; Zhang X Analyst; 2016 May; 141(11):3421-7. PubMed ID: 27136976 [TBL] [Abstract][Full Text] [Related]
9. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. Li Y; Leng T; Lin H; Deng C; Xu X; Yao N; Yang P; Zhang X J Proteome Res; 2007 Nov; 6(11):4498-510. PubMed ID: 17900103 [TBL] [Abstract][Full Text] [Related]
10. Rapid enrichment of phosphopeptides from tryptic digests of proteins using iron oxide nanocomposites of magnetic particles coated with zirconia as the concentrating probes. Lo CY; Chen WY; Chen CT; Chen YC J Proteome Res; 2007 Feb; 6(2):887-93. PubMed ID: 17269746 [TBL] [Abstract][Full Text] [Related]
11. Development of diamond-lanthanide metal oxide affinity composites for the selective capture of endogenous serum phosphopeptides. Hussain D; Musharraf SG; Najam-ul-Haq M Anal Bioanal Chem; 2016 Feb; 408(6):1633-41. PubMed ID: 26758594 [TBL] [Abstract][Full Text] [Related]
12. A novel molybdenum disulfide nanosheet loaded Titanium/Zirconium bimetal oxide affinity probe for efficient enrichment of phosphopeptides in A549 cells. Ma ZQ; Wang YH; Peng Y; Guo X; Meng Z J Chromatogr B Analyt Technol Biomed Life Sci; 2022 May; 1199():123235. PubMed ID: 35447520 [TBL] [Abstract][Full Text] [Related]
13. Designed synthesis of Graphene @titania @mesoporous silica hybrid material as size-exclusive metal oxide affinity chromatography platform for selective enrichment of endogenous phosphopeptides. Yao J; Sun N; Deng C; Zhang X Talanta; 2016 Apr; 150():296-301. PubMed ID: 26838411 [TBL] [Abstract][Full Text] [Related]
14. Facile preparation of molybdenum (VI) oxide - Modified graphene oxide nanocomposite for specific enrichment of phosphopeptides. Sun H; Zhang Q; Zhang L; Zhang W; Zhang L J Chromatogr A; 2017 Oct; 1521():36-43. PubMed ID: 28947203 [TBL] [Abstract][Full Text] [Related]
15. Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. Jabeen F; Najam-Ul-Haq M; Ashiq MN; Rainer M; Huck CW; Bonn GK J Sep Sci; 2016 Nov; 39(21):4175-4182. PubMed ID: 27592854 [TBL] [Abstract][Full Text] [Related]
16. A nitrogen-doped graphene tube composite based on immobilized metal affinity chromatography for the capture of phosphopeptides. Wang K; Yu A; Gao Y; Chen M; Yuan H; Zhang S; Ouyang G Talanta; 2023 Aug; 261():124617. PubMed ID: 37187026 [TBL] [Abstract][Full Text] [Related]
17. A capillary column packed with a zirconium(IV)-based organic framework for enrichment of endogenous phosphopeptides. Lin H; Chen H; Shao X; Deng C Mikrochim Acta; 2018 Nov; 185(12):562. PubMed ID: 30488348 [TBL] [Abstract][Full Text] [Related]
18. [Applications of Ti-SBA-15 mesoporous material in high performance enrichment of phosphopeptides]. Zhang Y; Qin H; Wu R; Zou H Se Pu; 2010 Feb; 28(2):123-7. PubMed ID: 20556948 [TBL] [Abstract][Full Text] [Related]
19. Magnetic binary metal oxides affinity probe for highly selective enrichment of phosphopeptides. Wang M; Deng C; Li Y; Zhang X ACS Appl Mater Interfaces; 2014 Jul; 6(14):11775-82. PubMed ID: 24911384 [TBL] [Abstract][Full Text] [Related]
20. Preparation of monodisperse immobilized Ti(4+) affinity chromatography microspheres for specific enrichment of phosphopeptides. Yu Z; Han G; Sun S; Jiang X; Chen R; Wang F; Wu R; Ye M; Zou H Anal Chim Acta; 2009 Mar; 636(1):34-41. PubMed ID: 19231353 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]