These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

1015 related articles for article (PubMed ID: 27983801)

  • 41. Towards minimally invasive deep brain stimulation and imaging: A near-infrared upconversion approach.
    Chen S; Wu J; Cai A; Gonzalez N; Yin R
    Neurosci Res; 2020 Mar; 152():59-65. PubMed ID: 31987879
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Near-infrared light excited UCNP-DNAzyme nanosensor for selective detection of Pb
    Huang L; Chen F; Zong X; Lu Q; Wu C; Ni Z; Liu M; Zhang Y
    Talanta; 2021 May; 227():122156. PubMed ID: 33714463
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Multicolor tunability and upconversion enhancement of fluoride nanoparticles by oxygen dopant.
    Niu W; Wu S; Zhang S; Su LT; Tok AI
    Nanoscale; 2013 Sep; 5(17):8164-71. PubMed ID: 23887282
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Emerging ≈800 nm Excited Lanthanide-Doped Upconversion Nanoparticles.
    Xie X; Li Z; Zhang Y; Guo S; Pendharkar AI; Lu M; Huang L; Huang W; Han G
    Small; 2017 Feb; 13(6):. PubMed ID: 27982542
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Perspectives for Upconverting Nanoparticles.
    Wilhelm S
    ACS Nano; 2017 Nov; 11(11):10644-10653. PubMed ID: 29068198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal-Based Linear Light Upconversion Implemented in Molecular Complexes: Challenges and Perspectives.
    Bolvin H; Fürstenberg A; Golesorkhi B; Nozary H; Taarit I; Piguet C
    Acc Chem Res; 2022 Feb; 55(3):442-456. PubMed ID: 35067044
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Upconversion nanocomposites for photo-based cancer theranostics.
    Wang S; Bi A; Zeng W; Cheng Z
    J Mater Chem B; 2016 Aug; 4(32):5331-5348. PubMed ID: 32263457
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Lanthanide-Doped Nanoparticles for Near-Infrared Light Activation of Photopolymerization: Fundamentals, Optimization and Applications.
    Li Q; Yuan S; Liu F; Zhu X; Liu J
    Chem Rec; 2021 Jul; 21(7):1681-1696. PubMed ID: 34145731
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Rational design of a thermalresponsive-polymer-switchable FRET system for enhancing the temperature sensitivity of upconversion nanophosphors.
    Xiao Q; Li Y; Li F; Zhang M; Zhang Z; Lin H
    Nanoscale; 2014 Sep; 6(17):10179-86. PubMed ID: 25046250
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Aptamer-based luminescence energy transfer from near-infrared-to-near-infrared upconverting nanoparticles to gold nanorods and its application for the detection of thrombin.
    Yuan F; Chen H; Xu J; Zhang Y; Wu Y; Wang L
    Chemistry; 2014 Mar; 20(10):2888-94. PubMed ID: 24501010
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A hybrid upconversion nanoprobe for ratiometric detection of aliphatic biogenic amines in aqueous medium.
    Jaiswal S; Kundu S; Bandyopadhyay S; Patra A
    Nanoscale Adv; 2021 Jun; 3(11):3232-3239. PubMed ID: 36133671
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Nile Red Derivative-Modified Nanostructure for Upconversion Luminescence Sensing and Intracellular Detection of Fe(3+) and MR Imaging.
    Wei R; Wei Z; Sun L; Zhang JZ; Liu J; Ge X; Shi L
    ACS Appl Mater Interfaces; 2016 Jan; 8(1):400-10. PubMed ID: 26702512
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Upconversion nanoparticle-based fluorescence resonance energy transfer assay for Cr(III) ions in urine.
    Liu B; Tan H; Chen Y
    Anal Chim Acta; 2013 Jan; 761():178-85. PubMed ID: 23312329
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Synthesis and application of nanohybrids based on upconverting nanoparticles and polymers.
    Cheng Z; Lin J
    Macromol Rapid Commun; 2015 May; 36(9):790-827. PubMed ID: 25808559
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dual-Acceptor-Based Upconversion Luminescence Nanosensor with Enhanced Quenching Efficiency for in Situ Imaging and Quantification of MicroRNA in Living Cells.
    Yang L; Zhang K; Bi S; Zhu JJ
    ACS Appl Mater Interfaces; 2019 Oct; 11(42):38459-38466. PubMed ID: 31593426
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Luminescence energy transfer detection of PSA in red region based on Mn2+-enhanced NaYF4:Yb, Er upconversion nanorods.
    Zhang J; Wang S; Gao N; Feng D; Wang L; Chen H
    Biosens Bioelectron; 2015 Oct; 72():282-7. PubMed ID: 25996781
    [TBL] [Abstract][Full Text] [Related]  

  • 57. An efficient NIR-to-NIR signal-based LRET system for homogeneous competitive immunoassay.
    Kang D; Lee S; Shin H; Pyun J; Lee J
    Biosens Bioelectron; 2020 Feb; 150():111921. PubMed ID: 31818754
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photon upconversion sensitized nanoprobes for sensing and imaging of pH.
    Arppe R; Näreoja T; Nylund S; Mattsson L; Koho S; Rosenholm JM; Soukka T; Schäferling M
    Nanoscale; 2014 Jun; 6(12):6837-43. PubMed ID: 24827972
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Synergistic synthesis of gold nanoflowers as upconversion near-infrared nanoprobe energy acceptor and recognition unit for improved hydrogen sulfide sensing.
    Chen H; Tian P; Guo J; Sun M; Zhu W; Li Z; Liu Z
    Talanta; 2024 Jun; 273():125908. PubMed ID: 38503119
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties.
    Zhou J; Sun Y; Du X; Xiong L; Hu H; Li F
    Biomaterials; 2010 Apr; 31(12):3287-95. PubMed ID: 20132982
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 51.