These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27983815)

  • 1. Imaging Organophosphate and Pyrophosphate Sequestration on Brucite by in Situ Atomic Force Microscopy.
    Wang L; Putnis CV; King HE; Hövelmann J; Ruiz-Agudo E; Putnis A
    Environ Sci Technol; 2017 Jan; 51(1):328-336. PubMed ID: 27983815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualizing Organophosphate Precipitation at the Calcite-Water Interface by in Situ Atomic-Force Microscopy.
    Wang L; Qin L; Putnis CV; Ruiz-Agudo E; King HE; Putnis A
    Environ Sci Technol; 2016 Jan; 50(1):259-68. PubMed ID: 26636475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution and Precipitation Dynamics at Environmental Mineral Interfaces Imaged by In Situ Atomic Force Microscopy.
    Wang L; Putnis CV
    Acc Chem Res; 2020 Jun; 53(6):1196-1205. PubMed ID: 32441501
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct nanoscale observations of CO2 sequestration during brucite [Mg(OH)2] dissolution.
    Hövelmann J; Putnis CV; Ruiz-Agudo E; Austrheim H
    Environ Sci Technol; 2012 May; 46(9):5253-60. PubMed ID: 22500652
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In Situ Nanoscale Imaging of Struvite Formation during the Dissolution of Natural Brucite: Implications for Phosphorus Recovery from Wastewaters.
    Hövelmann J; Putnis CV
    Environ Sci Technol; 2016 Dec; 50(23):13032-13041. PubMed ID: 27934285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Direct observations of nanoscale brushite dissolution by the concentration-dependent adsorption of phosphate or phytate.
    Ge X; Fan Y; Zhai H; Chi J; Putnis CV; Wang L; Zhang W
    Water Res; 2024 Jan; 248():120851. PubMed ID: 37976955
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano-atomic scale hydrophobic/philic confinement of peptides on mineral surfaces by cross-correlated SPM and quantum mechanical DFT analysis.
    Moro D; Ulian G; ValdrÈ G
    J Microsc; 2020 Dec; 280(3):204-221. PubMed ID: 32458447
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of Nucleic Acid Components to the Serpentinite-Hosted Hydrothermal Mineral Brucite.
    Fornaro T; Brucato JR; Feuillie C; Sverjensky DA; Hazen RM; Brunetto R; D'Amore M; Barone V
    Astrobiology; 2018 Aug; 18(8):989-1007. PubMed ID: 30048146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Speciation of Brucite Dissolution in Aqueous Mineral Carbonation: Insights from Density-Functional Theory Simulations.
    Azizi D; Larachi F
    J Phys Chem A; 2019 Jan; 123(4):889-905. PubMed ID: 30633523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Accelerated carbonation of brucite in mine tailings for carbon sequestration.
    Harrison AL; Power IM; Dipple GM
    Environ Sci Technol; 2013 Jan; 47(1):126-34. PubMed ID: 22770473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of ammonium from rare-earth wastewater using natural brucite as a magnesium source of struvite precipitation.
    Huang HM; Xiao XM; Yang LP; Yan B
    Water Sci Technol; 2011; 63(3):468-74. PubMed ID: 21278469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct Observation of Simultaneous Immobilization of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Qin L; Zhang W; Putnis CV; Putnis A
    Environ Sci Technol; 2018 Mar; 52(6):3493-3502. PubMed ID: 29488373
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of Magnesite Formation at Low Temperature and High pCO2 in Aqueous Solution.
    Qafoku O; Dixon DA; Rosso KM; Schaef HT; Bowden ME; Arey BW; Felmy AR
    Environ Sci Technol; 2015 Sep; 49(17):10736-44. PubMed ID: 26200317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Single Molecule Investigation of Glycine-Chlorite Interaction by Cross-Correlated Scanning Probe Microscopy and Quantum Mechanics Simulations.
    Moro D; Ulian G; Valdrè G
    Langmuir; 2015 Apr; 31(15):4453-63. PubMed ID: 25830864
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissolution kinetics and mechanisms at dolomite-water interfaces: effects of electrolyte specific ionic strength.
    Xu M; Sullivan K; Vanness G; Knauss KG; Higgins SR
    Environ Sci Technol; 2013 Jan; 47(1):110-8. PubMed ID: 22681699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Distinctive Reactivities at Biotite Edge and Basal Planes in the Presence of Organic Ligands: Implications for Organic-Rich Geologic CO2 Sequestration.
    Zhang L; Jun YS
    Environ Sci Technol; 2015 Aug; 49(16):10217-25. PubMed ID: 26171995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct nanoscale observations of the coupled dissolution of calcite and dolomite and the precipitation of gypsum.
    Offeddu FG; Cama J; Soler JM; Putnis CV
    Beilstein J Nanotechnol; 2014; 5():1245-53. PubMed ID: 25161860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aqueous carbonation of natural brucite: relevance to CO2 sequestration.
    Zhao L; Sang L; Chen J; Ji J; Teng HH
    Environ Sci Technol; 2010 Jan; 44(1):406-11. PubMed ID: 19947626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetics of calcium phosphate nucleation and growth on calcite: implications for predicting the fate of dissolved phosphate species in alkaline soils.
    Wang L; Ruiz-Agudo E; Putnis CV; Menneken M; Putnis A
    Environ Sci Technol; 2012 Jan; 46(2):834-42. PubMed ID: 22136106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Humic Acids Limit the Precipitation of Cadmium and Arsenate at the Brushite-Fluid Interface.
    Zhai H; Wang L; Hövelmann J; Qin L; Zhang W; Putnis CV
    Environ Sci Technol; 2019 Jan; 53(1):194-202. PubMed ID: 30516375
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.