These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 27983821)

  • 1. Dehydrogenation of Formic Acid Catalyzed by a Ruthenium Complex with an N,N'-Diimine Ligand.
    Guan C; Zhang DD; Pan Y; Iguchi M; Ajitha MJ; Hu J; Li H; Yao C; Huang MH; Min S; Zheng J; Himeda Y; Kawanami H; Huang KW
    Inorg Chem; 2017 Jan; 56(1):438-445. PubMed ID: 27983821
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unprecedentedly high formic acid dehydrogenation activity on an iridium complex with an N,N'-diimine ligand in water.
    Wang Z; Lu SM; Li J; Wang J; Li C
    Chemistry; 2015 Sep; 21(36):12592-5. PubMed ID: 26202172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO
    Fink C; Laurenczy G
    Dalton Trans; 2017 Jan; 46(5):1670-1676. PubMed ID: 28098294
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient catalytic decomposition of formic acid for the selective generation of H2 and H/D exchange with a water-soluble rhodium complex in aqueous solution.
    Fukuzumi S; Kobayashi T; Suenobu T
    ChemSusChem; 2008; 1(10):827-34. PubMed ID: 18846597
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formate dehydrogenase activity by a Cu(II)-based molecular catalyst and deciphering the mechanism using DFT studies.
    Mishra A; Srivastava D; Raj D; Patra N; Padhi SK
    Dalton Trans; 2024 Jan; 53(3):1209-1220. PubMed ID: 38108489
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pd
    Lee WJ; Hwang YJ; Kim J; Jeong H; Yoon CW
    Chemphyschem; 2019 May; 20(10):1382-1391. PubMed ID: 30706621
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient disproportionation of formic acid to methanol using molecular ruthenium catalysts.
    Savourey S; Lefèvre G; Berthet JC; Thuéry P; Genre C; Cantat T
    Angew Chem Int Ed Engl; 2014 Sep; 53(39):10466-70. PubMed ID: 25088282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical study on the mechanism of aqueous synthesis of formic acid catalyzed by [Ru3+]-EDTA complex.
    Chen ZN; Chan KY; Pulleri JK; Kong J; Hu H
    Inorg Chem; 2015 Feb; 54(4):1314-24. PubMed ID: 25646570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Hydrogen Storage through an Efficient Ruthenium-Catalyzed Dehydrogenation of Formic Acid.
    Xin Z; Zhang J; Sordakis K; Beller M; Du CX; Laurenczy G; Li Y
    ChemSusChem; 2018 Jul; 11(13):2077-2082. PubMed ID: 29722204
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single-Site Ruthenium Pincer Complex Knitted into Porous Organic Polymers for Dehydrogenation of Formic Acid.
    Wang X; Ling EAP; Guan C; Zhang Q; Wu W; Liu P; Zheng N; Zhang D; Lopatin S; Lai Z; Huang KW
    ChemSusChem; 2018 Oct; 11(20):3591-3598. PubMed ID: 30207639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Revisiting Formic Acid Decomposition by a Graph-Theoretical Approach.
    Ida T; Nishida M; Hori Y
    J Phys Chem A; 2019 Nov; 123(44):9579-9586. PubMed ID: 31625743
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Hydrogen Storage and Production Using a Catalyst with an Imidazoline-Based, Proton-Responsive Ligand.
    Wang L; Onishi N; Murata K; Hirose T; Muckerman JT; Fujita E; Himeda Y
    ChemSusChem; 2017 Mar; 10(6):1071-1075. PubMed ID: 27860395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly efficient dehydrogenation of formic acid in aqueous solution catalysed by an easily available water-soluble iridium(iii) dihydride.
    Papp G; Ölveti G; Horváth H; Kathó Á; Joó F
    Dalton Trans; 2016 Oct; 45(37):14516-9. PubMed ID: 27263467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Study of Formic Acid Dehydrogenation Catalyzed by Al(III)-Bis(imino)pyridine.
    Lu QQ; Yu HZ; Fu Y
    Chemistry; 2016 Mar; 22(13):4584-91. PubMed ID: 26879469
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H-Bonding of Formic Acid with Its Decomposition Products: A Matrix Isolation and Computational Study of the HCOOH/CO and HCOOH/CO₂ Complexes.
    Rozenberg M; Loewenschuss A; Nielsen CJ
    J Phys Chem A; 2015 Aug; 119(31):8497-502. PubMed ID: 26159036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH-Dependent transfer hydrogenation or dihydrogen release catalyzed by a [(η
    Luo C; Li L; Yue X; Li P; Zhang L; Yang Z; Pu M; Cao Z; Lei M
    RSC Adv; 2020 Mar; 10(18):10411-10419. PubMed ID: 35492899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Visible-Light Photocatalytic Reduction of CO
    Hameed Y; Rao GK; Ovens JS; Gabidullin B; Richeson D
    ChemSusChem; 2019 Aug; 12(15):3453-3457. PubMed ID: 31185145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of H2 on the gas-phase decomposition of formic acid: a theoretical study.
    Hu SW; Wang XY; Chu TW; Liu XQ
    J Phys Chem A; 2005 Oct; 109(40):9129-40. PubMed ID: 16332022
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-Site Regulation of Pyridyltriazole in Cp*Ir(N̂N)(H
    Ge S; Gong L; Yi P; Mo X; Liu C; Yi XY; He P
    Inorg Chem; 2023 Nov; 62(45):18375-18383. PubMed ID: 37910633
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydride Pinning Pathway in the Hydrogenation of CO
    Sarma PJ; Baruah SD; Logsdail A; Deka RC
    Chemphyschem; 2019 Mar; 20(5):680-686. PubMed ID: 30648792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.