These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 27983821)
21. Density functional theory mechanistic study of the reduction of CO2 to CH4 catalyzed by an ammonium hydridoborate ion pair: CO2 activation via formation of a formic acid entity. Wen M; Huang F; Lu G; Wang ZX Inorg Chem; 2013 Oct; 52(20):12098-107. PubMed ID: 24087841 [TBL] [Abstract][Full Text] [Related]
22. Role of the chemically non-innocent ligand in the catalytic formation of hydrogen and carbon dioxide from methanol and water with the metal as the spectator. Li H; Hall MB J Am Chem Soc; 2015 Sep; 137(38):12330-42. PubMed ID: 26320885 [TBL] [Abstract][Full Text] [Related]
23. Dehydrogenation of formic acid using iridium-NSi species as catalyst precursors. Guzmán J; Urriolabeitia A; Polo V; Fernández-Buenestado M; Iglesias M; Fernández-Alvarez FJ Dalton Trans; 2022 Mar; 51(11):4386-4393. PubMed ID: 35194624 [TBL] [Abstract][Full Text] [Related]
24. Hydrogen Generation from Additive-Free Formic Acid Decomposition Under Mild Conditions by Pd/C: Experimental and DFT Studies. Sanchez F; Motta D; Roldan A; Hammond C; Villa A; Dimitratos N Top Catal; 2018; 61(3):254-266. PubMed ID: 30956509 [TBL] [Abstract][Full Text] [Related]
25. Anchoring Pt Single Atoms on Te Nanowires for Plasmon-Enhanced Dehydrogenation of Formic Acid at Room Temperature. Han L; Zhang L; Wu H; Zu H; Cui P; Guo J; Guo R; Ye J; Zhu J; Zheng X; Yang L; Zhong Y; Liang S; Wang L Adv Sci (Weinh); 2019 Jun; 6(12):1900006. PubMed ID: 31380161 [TBL] [Abstract][Full Text] [Related]
27. Direct, in situ determination of pH and solute concentrations in formic acid dehydrogenation and CO(2) hydrogenation in pressurised aqueous solutions using (1)H and (13)C NMR spectroscopy. Moret S; Dyson PJ; Laurenczy G Dalton Trans; 2013 Apr; 42(13):4353-6. PubMed ID: 23412518 [TBL] [Abstract][Full Text] [Related]
28. Efficient additive-free formic acid dehydrogenation with a NNN-ruthenium complex. Knörr P; Lentz N; Albrecht M Catal Sci Technol; 2023 Oct; 13(19):5625-5631. PubMed ID: 38013841 [TBL] [Abstract][Full Text] [Related]
29. Catalytic Dehydrogenation of Formic Acid Promoted by Triphos-Co Complexes: Two Competing Pathways for H Tsai CP; Chen CY; Lin YL; Lan JC; Tsai ML Inorg Chem; 2024 Jan; 63(4):1759-1773. PubMed ID: 38217506 [TBL] [Abstract][Full Text] [Related]
30. Highly Efficient Additive-Free Dehydrogenation of Neat Formic Acid. Kar S; Rauch M; Leitus G; Ben-David Y; Milstein D Nat Catal; 2021 Mar; 4():193-201. PubMed ID: 37152186 [TBL] [Abstract][Full Text] [Related]
31. Mechanistic insights into iron catalyzed dehydrogenation of formic acid: β-hydride elimination vs. direct hydride transfer. Yang X Dalton Trans; 2013 Sep; 42(33):11987-91. PubMed ID: 23846167 [TBL] [Abstract][Full Text] [Related]
32. Efficient Iridium Catalysts for Formic Acid Dehydrogenation: Investigating the Electronic Effect on the Elementary β-Hydride Elimination and Hydrogen Formation Steps. Liu H; Wang WH; Xiong H; Nijamudheen A; Ertem MZ; Wang M; Duan L Inorg Chem; 2021 Mar; 60(5):3410-3417. PubMed ID: 33560831 [TBL] [Abstract][Full Text] [Related]
33. Lattice-Hydride Mechanism in Electrocatalytic CO Tang Q; Lee Y; Li DY; Choi W; Liu CW; Lee D; Jiang DE J Am Chem Soc; 2017 Jul; 139(28):9728-9736. PubMed ID: 28640611 [TBL] [Abstract][Full Text] [Related]
34. Deciphering the Mechanistic Details of Manganese-Catalyzed Formic Acid Dehydrogenation: Insights from DFT Calculations. Johnee Britto N; Jaccob M Inorg Chem; 2021 Aug; 60(15):11038-11047. PubMed ID: 34240859 [TBL] [Abstract][Full Text] [Related]
35. Metal-free dehydrogenation of formic acid to H Chauvier C; Tlili A; Das Neves Gomes C; Thuéry P; Cantat T Chem Sci; 2015 May; 6(5):2938-2942. PubMed ID: 29308170 [TBL] [Abstract][Full Text] [Related]
36. Effect of the ortho-Hydroxyl Groups on a Bipyridine Ligand of Iridium Complexes for the High-Pressure Gas Generation from the Catalytic Decomposition of Formic Acid. Iguchi M; Zhong H; Himeda Y; Kawanami H Chemistry; 2017 Dec; 23(70):17788-17793. PubMed ID: 28960487 [TBL] [Abstract][Full Text] [Related]
37. DFT Probe into the Mechanism of Formic Acid Dehydrogenation Catalyzed by Cp*Co, Cp*Rh, and Cp*Ir Catalysts with 4,4'-Amino-/Alkylamino-Functionalized 2,2'-Bipyridine Ligands. Johnee Britto N; Jaccob M J Phys Chem A; 2021 Nov; 125(43):9478-9488. PubMed ID: 34702035 [TBL] [Abstract][Full Text] [Related]
38. Interconversion of CO2 and formic acid by bio-inspired Ir complexes with pendent bases. Fujita E; Muckerman JT; Himeda Y Biochim Biophys Acta; 2013; 1827(8-9):1031-8. PubMed ID: 23174332 [TBL] [Abstract][Full Text] [Related]
39. Hydrogenation of CO Yan X; Ge H; Yang X Inorg Chem; 2019 May; 58(9):5494-5502. PubMed ID: 31025565 [TBL] [Abstract][Full Text] [Related]
40. Formic acid dehydrogenation with bioinspired iridium complexes: a kinetic isotope effect study and mechanistic insight. Wang WH; Xu S; Manaka Y; Suna Y; Kambayashi H; Muckerman JT; Fujita E; Himeda Y ChemSusChem; 2014 Jul; 7(7):1976-83. PubMed ID: 24840600 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]