BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

195 related articles for article (PubMed ID: 27983962)

  • 41. Renal differentiation of amniotic fluid stem cells: perspectives for clinical application and for studies on specific human genetic diseases.
    Rosner M; Schipany K; Gundacker C; Shanmugasundaram B; Li K; Fuchs C; Lubec G; Hengstschläger M
    Eur J Clin Invest; 2012 Jun; 42(6):677-84. PubMed ID: 22060053
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Transformation of intestinal stem cells into gastric stem cells on loss of transcription factor Cdx2.
    Simmini S; Bialecka M; Huch M; Kester L; van de Wetering M; Sato T; Beck F; van Oudenaarden A; Clevers H; Deschamps J
    Nat Commun; 2014 Dec; 5():5728. PubMed ID: 25500896
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Pluripotent stem cell-derived kidney organoids: An in vivo-like in vitro technology.
    Schutgens F; Verhaar MC; Rookmaaker MB
    Eur J Pharmacol; 2016 Nov; 790():12-20. PubMed ID: 27375081
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The use of murine-derived fundic organoids in studies of gastric physiology.
    Schumacher MA; Aihara E; Feng R; Engevik A; Shroyer NF; Ottemann KM; Worrell RT; Montrose MH; Shivdasani RA; Zavros Y
    J Physiol; 2015 Apr; 593(8):1809-27. PubMed ID: 25605613
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture.
    Sasai Y
    Cell Stem Cell; 2013 May; 12(5):520-30. PubMed ID: 23642363
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The generation of kidney organoids by differentiation of human pluripotent cells to ureteric bud progenitor-like cells.
    Xia Y; Sancho-Martinez I; Nivet E; Rodriguez Esteban C; Campistol JM; Izpisua Belmonte JC
    Nat Protoc; 2014 Nov; 9(11):2693-704. PubMed ID: 25340442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. [Tissue engineering in urology, new approaches for urinary bladder reconstruction].
    Murav'ev AN; Orlova NV; Blinova MI; Iudintseva NM
    Tsitologiia; 2015; 57(1):14-8. PubMed ID: 25872371
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recent progress in organoid culture to model intestinal epithelial barrier functions.
    Nakamura T
    Int Immunol; 2019 Feb; 31(1):13-21. PubMed ID: 30281080
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Organoids: Modeling Development and the Stem Cell Niche in a Dish.
    Kretzschmar K; Clevers H
    Dev Cell; 2016 Sep; 38(6):590-600. PubMed ID: 27676432
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Organoids are promising tools for species-specific in vitro toxicological studies.
    Augustyniak J; Bertero A; Coccini T; Baderna D; Buzanska L; Caloni F
    J Appl Toxicol; 2019 Dec; 39(12):1610-1622. PubMed ID: 31168795
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Helicobacter-induced gastric inflammation alters the properties of gastric tissue stem/progenitor cells.
    Shibata W; Sue S; Tsumura S; Ishii Y; Sato T; Kameta E; Sugimori M; Yamada H; Kaneko H; Sasaki T; Ishii T; Tamura T; Kondo M; Maeda S
    BMC Gastroenterol; 2017 Dec; 17(1):145. PubMed ID: 29212456
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling Intestinal Stem Cell Function with Organoids.
    Takahashi T; Fujishima K; Kengaku M
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681571
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Homeostatic mini-intestines through scaffold-guided organoid morphogenesis.
    Nikolaev M; Mitrofanova O; Broguiere N; Geraldo S; Dutta D; Tabata Y; Elci B; Brandenberg N; Kolotuev I; Gjorevski N; Clevers H; Lutolf MP
    Nature; 2020 Sep; 585(7826):574-578. PubMed ID: 32939089
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Regeneration of complex oral organs using 3D cell organization technology.
    Oshima M; Ogawa M; Tsuji T
    Curr Opin Cell Biol; 2017 Dec; 49():84-90. PubMed ID: 29289879
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cerebral Organoids-Challenges to Establish a Brain Prototype.
    Eremeev AV; Lebedeva OS; Bogomiakova ME; Lagarkova MA; Bogomazova AN
    Cells; 2021 Jul; 10(7):. PubMed ID: 34359959
    [TBL] [Abstract][Full Text] [Related]  

  • 56. In vitro generation of human pluripotent stem cell derived lung organoids.
    Dye BR; Hill DR; Ferguson MA; Tsai YH; Nagy MS; Dyal R; Wells JM; Mayhew CN; Nattiv R; Klein OD; White ES; Deutsch GH; Spence JR
    Elife; 2015 Mar; 4():. PubMed ID: 25803487
    [TBL] [Abstract][Full Text] [Related]  

  • 57. [Regeneration of the central nervous system using iPS cell-technologies].
    Okano H
    Rinsho Shinkeigaku; 2009 Nov; 49(11):825-6. PubMed ID: 20030221
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Scaffold-free cell delivery for use in regenerative medicine.
    Kelm JM; Fussenegger M
    Adv Drug Deliv Rev; 2010 Jun; 62(7-8):753-64. PubMed ID: 20153387
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Generation of multi-cellular human liver organoids from pluripotent stem cells.
    Thompson WL; Takebe T
    Methods Cell Biol; 2020; 159():47-68. PubMed ID: 32586449
    [TBL] [Abstract][Full Text] [Related]  

  • 60. iPSC-Derived Liver Organoids: A Journey from Drug Screening, to Disease Modeling, Arriving to Regenerative Medicine.
    Olgasi C; Cucci A; Follenzi A
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32867371
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.