These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
96 related articles for article (PubMed ID: 27984)
1. NADPH-oxidation activities in subcellular fractions isolated from resting or phagocytozing human polymorphonuclears. Auclair C; Torres M; Hakim J; Troube H Am J Hematol; 1978; 4(2):113-20. PubMed ID: 27984 [TBL] [Abstract][Full Text] [Related]
2. Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay. Iverson D; DeChatelet LR; Spitznagel JK; Wang P J Clin Invest; 1977 Feb; 59(2):282-90. PubMed ID: 833275 [TBL] [Abstract][Full Text] [Related]
4. Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes. McPhail LC; DeChatelet LR; Shirley PS J Clin Invest; 1976 Oct; 58(4):774-80. PubMed ID: 965484 [TBL] [Abstract][Full Text] [Related]
5. Allosteric transformation of reduced nicotinamide adenine dinucleotide (phosphate) oxidase induced by phagocytosis in human polymorphonuclear leukocytes. DeChatelet LR; Shirley PS; McPhail LC; Iverson DB; Doellgast GJ Infect Immun; 1978 May; 20(2):398-405. PubMed ID: 27457 [TBL] [Abstract][Full Text] [Related]
6. Effect of cytochalasin B on the NADPH oxidase activity of human polymorphonuclear leukocytes. Tsan MF J Reticuloendothel Soc; 1978 Mar; 23(3):205-11. PubMed ID: 650641 [No Abstract] [Full Text] [Related]
7. Studies on the NADPH oxidation by subcellular particles from phagocytosing polymorphonuclear leucocytes: evidence for the involvement of three mechanisms. Bellavite P; Berton G; Dri P Biochim Biophys Acta; 1980 Jul; 591(2):434-44. PubMed ID: 6249349 [TBL] [Abstract][Full Text] [Related]
8. Increased activity of the respiratory burst in cord blood neutrophils: kinetics of the NADPH oxidase enzyme system in subcellular fractions. Ambruso DR; Stork LC; Gibson BE; Thurman GW Pediatr Res; 1987 Feb; 21(2):205-10. PubMed ID: 3029658 [TBL] [Abstract][Full Text] [Related]
9. Different subcellular localization of cytochrome b and the dormant NADPH-oxidase in neutrophils and macrophages: effect on the production of reactive oxygen species during phagocytosis. Johansson A; Jesaitis AJ; Lundqvist H; Magnusson KE; Sjölin C; Karlsson A; Dahlgren C Cell Immunol; 1995 Mar; 161(1):61-71. PubMed ID: 7867086 [TBL] [Abstract][Full Text] [Related]
10. Pyridine nucleotide-dependent generation of hydrogen peroxide by a particulate fraction from human neutrophils: effect of substrate concentration. DeChatelet LR; Shirley PS Inflammation; 1982 Sep; 6(3):217-26. PubMed ID: 7129596 [TBL] [Abstract][Full Text] [Related]
11. Evidence that NADPH is the actual substrate of the oxidase responsible for the "respiratory burst" of phagocytosing polymorphonuclear leukocytes. Suzuki H; Kakinuma K J Biochem; 1983 Mar; 93(3):709-15. PubMed ID: 6874661 [TBL] [Abstract][Full Text] [Related]
12. Subcellular localization of the superoxide-forming enzyme in human neutrophils. Dewald B; Baggiolini M; Curnutte JT; Babior BM J Clin Invest; 1979 Jan; 63(1):21-9. PubMed ID: 216707 [TBL] [Abstract][Full Text] [Related]
13. Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. Liang B; Petty HR J Cell Physiol; 1992 Jul; 152(1):145-56. PubMed ID: 1618916 [TBL] [Abstract][Full Text] [Related]
14. Subcellular localization of NAD(P)H oxidase(s) in human neutrophilic polymorphonuclear leucocytes. Iverson DB; Wang-Iverson P; Spitznagel JK; DeCHATELET LR Biochem J; 1978 Oct; 176(1):175-8. PubMed ID: 728106 [TBL] [Abstract][Full Text] [Related]
15. NADPH-dependent antibacterial activity in subcellular fractions of human neutrophils: interaction with granule constituents. Sasada M; Kubo A; Nishimura T; Kakita T; Moriguchi T; Uchino H; Ambruso DR; Johnston RB Nihon Ketsueki Gakkai Zasshi; 1986 Sep; 49(6):1152-63. PubMed ID: 3811782 [No Abstract] [Full Text] [Related]
16. NADPH-dependent superoxide-forming oxidase in phagocytic vesicles of human monocytes. Takamatsu J; Takeshige K; Takahashi S; Yoshitake J; Minakami S J Biochem; 1986 Jun; 99(6):1597-604. PubMed ID: 3745137 [TBL] [Abstract][Full Text] [Related]
17. Effect of 2',3'-dialdehyde NADPH on activation of superoxide-producing NADPH oxidase in a cell-free system of pig neutrophils. Takasugi S; Ishida K; Takeshige K; Minakami S J Biochem; 1989 Feb; 105(2):155-7. PubMed ID: 2542233 [TBL] [Abstract][Full Text] [Related]
18. Activation of a NADPH oxidase from horse polymorphonuclear leukocytes in a cell-free system. Heyneman RA; Vercauteren RE J Leukoc Biol; 1984 Dec; 36(6):751-9. PubMed ID: 6594417 [TBL] [Abstract][Full Text] [Related]
19. Deactivation of the subcellular NADPH oxidase and its relationship to termination of the respiratory burst. Eklund EA; Gabig TG Biochem Soc Trans; 1991 Feb; 19(1):51-4. PubMed ID: 1645315 [No Abstract] [Full Text] [Related]
20. Subcellular localization of O2- generating enzyme in guinea pig polymorphonuclear leukocytes; fractionation of subcellular particles by using a Percoll density gradient. Yamaguchi T; Sato K; Shimada K; Kakinuma K J Biochem; 1982 Jan; 91(1):31-40. PubMed ID: 6279584 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]