BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27984017)

  • 41. Native-like membrane models of E. coli polar lipid extract shed light on the importance of lipid composition complexity.
    Pluhackova K; Horner A
    BMC Biol; 2021 Jan; 19(1):4. PubMed ID: 33441107
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cardiolipin, the heart of mitochondrial metabolism.
    Houtkooper RH; Vaz FM
    Cell Mol Life Sci; 2008 Aug; 65(16):2493-506. PubMed ID: 18425414
    [TBL] [Abstract][Full Text] [Related]  

  • 43. What makes the bioactive lipids phosphatidic acid and lysophosphatidic acid so special?
    Kooijman EE; Carter KM; van Laar EG; Chupin V; Burger KN; de Kruijff B
    Biochemistry; 2005 Dec; 44(51):17007-15. PubMed ID: 16363814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Age-related changes in mitochondrial membrane composition of rainbow trout (Oncorhynchus mykiss) heart and brain.
    Almaida-Pagán PF; de Costa J; Mendiola P; Tocher DR
    Comp Biochem Physiol B Biochem Mol Biol; 2012 Sep; 163(1):129-37. PubMed ID: 22634369
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Contrasting behavior of zwitterionic and cationic polymers bound to anionic liposomes.
    Yaroslavov AA; Sitnikova TA; Rakhnyanskaya AA; Ermakov YA; Burova TV; Grinberg VY; Menger FM
    Langmuir; 2007 Jul; 23(14):7539-44. PubMed ID: 17550275
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Kinetics of proton exchange of phosphatidylethanolamine in phospholipid vesicles.
    Ralph EK; Lange Y; Redfield AG
    Biophys J; 1985 Dec; 48(6):1053-7. PubMed ID: 4092067
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Monitoring the redox and protonation dependent contributions of cardiolipin in electrochemically induced FTIR difference spectra of the cytochrome bc(1) complex from yeast.
    Hielscher R; Wenz T; Hunte C; Hellwig P
    Biochim Biophys Acta; 2009 Jun; 1787(6):617-25. PubMed ID: 19413949
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differential scanning calorimetry and Fourier transform infrared spectroscopic studies of phospholipid organization and lipid-peptide interactions in nanoporous substrate-supported lipid model membranes.
    Alaouie AM; Lewis RN; McElhaney RN
    Langmuir; 2007 Jun; 23(13):7229-34. PubMed ID: 17530791
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Modification of phospholipid membrane structure by the plant toxic peptide Pyrularia thionin.
    Gasanov SE; Vernon LP; Aripov TF
    Arch Biochem Biophys; 1993 Mar; 301(2):367-74. PubMed ID: 8384833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. 5-aminolevulinic acid induces lipid peroxidation in cardiolipin-rich liposomes.
    Oteiza PI; Bechara EJ
    Arch Biochem Biophys; 1993 Sep; 305(2):282-7. PubMed ID: 8373166
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Reversibility of structural rearrangements in lipid membranes induced by adsorption-desorption of a polycation.
    Yaroslavov AA; Efimova AA; Lobyshev VI; Ermakov YA; Kabanov VA
    Membr Cell Biol; 1997; 10(6):683-8. PubMed ID: 9231366
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Role of cardiolipin peroxidation and Ca2+ in mitochondrial dysfunction and disease.
    Paradies G; Petrosillo G; Paradies V; Ruggiero FM
    Cell Calcium; 2009 Jun; 45(6):643-50. PubMed ID: 19368971
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of tissue, diet, and enzymatic remodeling on cardiolipin fatty acyl profile.
    Bradley RM; Stark KD; Duncan RE
    Mol Nutr Food Res; 2016 Aug; 60(8):1804-18. PubMed ID: 27061349
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Structural Changes and Proapoptotic Peroxidase Activity of Cardiolipin-Bound Mitochondrial Cytochrome c.
    Mandal A; Hoop CL; DeLucia M; Kodali R; Kagan VE; Ahn J; van der Wel PC
    Biophys J; 2015 Nov; 109(9):1873-84. PubMed ID: 26536264
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Salt as a catalyst in the mitochondria: returning cytochrome c to its native state after it misfolds on the surface of cardiolipin containing membranes.
    Pandiscia LA; Schweitzer-Stenner R
    Chem Commun (Camb); 2014 Apr; 50(28):3674-6. PubMed ID: 24394851
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Defining the Apoptotic Trigger: THE INTERACTION OF CYTOCHROME c AND CARDIOLIPIN.
    O'Brien ES; Nucci NV; Fuglestad B; Tommos C; Wand AJ
    J Biol Chem; 2015 Dec; 290(52):30879-87. PubMed ID: 26487716
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The interaction of adriamycin with small unilamellar vesicle liposomes. A fluorescence study.
    Karczmar GS; Tritton TR
    Biochim Biophys Acta; 1979 Nov; 557(2):306-19. PubMed ID: 583025
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Molecular mechanisms of apoptosis. structure of cytochrome c-cardiolipin complex.
    Vladimirov YA; Proskurnina EV; Alekseev AV
    Biochemistry (Mosc); 2013 Oct; 78(10):1086-97. PubMed ID: 24237142
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adriamycin inhibits the formation of non-bilayer lipid structures in cardiolipin-containing model membranes.
    Goormaghtigh E; Vandenbranden M; Ruysschaert JM; De Kruijff B
    Biochim Biophys Acta; 1982 Feb; 685(2):137-43. PubMed ID: 6277379
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Calorimetric, x-ray diffraction, and spectroscopic studies of the thermotropic phase behavior and organization of tetramyristoyl cardiolipin membranes.
    Lewis RN; Zweytick D; Pabst G; Lohner K; McElhaney RN
    Biophys J; 2007 May; 92(9):3166-77. PubMed ID: 17293402
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.