BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27984044)

  • 1. BFDCA: A Comprehensive Tool of Using Bayes Factor for Differential Co-Expression Analysis.
    Wang D; Wang J; Jiang Y; Liang Y; Xu D
    J Mol Biol; 2017 Feb; 429(3):446-453. PubMed ID: 27984044
    [TBL] [Abstract][Full Text] [Related]  

  • 2. DECODE: an integrated differential co-expression and differential expression analysis of gene expression data.
    Lui TW; Tsui NB; Chan LW; Wong CS; Siu PM; Yung BY
    BMC Bioinformatics; 2015 May; 16():182. PubMed ID: 26026612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. R/EBcoexpress: an empirical Bayesian framework for discovering differential co-expression.
    Dawson JA; Ye S; Kendziorski C
    Bioinformatics; 2012 Jul; 28(14):1939-40. PubMed ID: 22595207
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MetaDCN: meta-analysis framework for differential co-expression network detection with an application in breast cancer.
    Zhu L; Ding Y; Chen CY; Wang L; Huo Z; Kim S; Sotiriou C; Oesterreich S; Tseng GC
    Bioinformatics; 2017 Apr; 33(8):1121-1129. PubMed ID: 28031185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Condition-adaptive fused graphical lasso (CFGL): An adaptive procedure for inferring condition-specific gene co-expression network.
    Lyu Y; Xue L; Zhang F; Koch H; Saba L; Kechris K; Li Q
    PLoS Comput Biol; 2018 Sep; 14(9):e1006436. PubMed ID: 30240439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissection of regulatory networks that are altered in disease via differential co-expression.
    Amar D; Safer H; Shamir R
    PLoS Comput Biol; 2013; 9(3):e1002955. PubMed ID: 23505361
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering microarray gene expression data using weighted Chinese restaurant process.
    Qin ZS
    Bioinformatics; 2006 Aug; 22(16):1988-97. PubMed ID: 16766561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An empirical Bayesian approach for identifying differential coexpression in high-throughput experiments.
    Dawson JA; Kendziorski C
    Biometrics; 2012 Jun; 68(2):455-65. PubMed ID: 22004327
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gene expression patterns combined with network analysis identify hub genes associated with bladder cancer.
    Bi D; Ning H; Liu S; Que X; Ding K
    Comput Biol Chem; 2015 Jun; 56():71-83. PubMed ID: 25889321
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PCIT: an R package for weighted gene co-expression networks based on partial correlation and information theory approaches.
    Watson-Haigh NS; Kadarmideen HN; Reverter A
    Bioinformatics; 2010 Feb; 26(3):411-3. PubMed ID: 20007253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Computational methods for discovering gene networks from expression data.
    Lee WP; Tzou WS
    Brief Bioinform; 2009 Jul; 10(4):408-23. PubMed ID: 19505889
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A GMM-IG framework for selecting genes as expression panel biomarkers.
    Wang M; Chen JY
    Artif Intell Med; 2010; 48(2-3):75-82. PubMed ID: 20004087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarker identification and cancer classification based on microarray data using Laplace naive Bayes model with mean shrinkage.
    Wu MY; Dai DQ; Shi Y; Yan H; Zhang XF
    IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(6):1649-62. PubMed ID: 22868679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. BNArray: an R package for constructing gene regulatory networks from microarray data by using Bayesian network.
    Chen X; Chen M; Ning K
    Bioinformatics; 2006 Dec; 22(23):2952-4. PubMed ID: 17005537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. MultiDCoX: Multi-factor analysis of differential co-expression.
    Liany H; Rajapakse JC; Karuturi RKM
    BMC Bioinformatics; 2017 Dec; 18(Suppl 16):576. PubMed ID: 29297310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Differential correlation for sequencing data.
    Siska C; Kechris K
    BMC Res Notes; 2017 Jan; 10(1):54. PubMed ID: 28103954
    [TBL] [Abstract][Full Text] [Related]  

  • 17. KBoost: a new method to infer gene regulatory networks from gene expression data.
    Iglesias-Martinez LF; De Kegel B; Kolch W
    Sci Rep; 2021 Jul; 11(1):15461. PubMed ID: 34326402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Screening of the prognostic targets for breast cancer based co-expression modules analysis.
    Liu H; Ye H
    Mol Med Rep; 2017 Oct; 16(4):4038-4044. PubMed ID: 28731166
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robust identification of transcriptional regulatory networks using a Gibbs sampler on outlier sum statistic.
    Gu J; Xuan J; Riggins RB; Chen L; Wang Y; Clarke R
    Bioinformatics; 2012 Aug; 28(15):1990-7. PubMed ID: 22595208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A co-expression modules based gene selection for cancer recognition.
    Lu X; Deng Y; Huang L; Feng B; Liao B
    J Theor Biol; 2014 Dec; 362():75-82. PubMed ID: 24440175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.