BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 27984186)

  • 1. Immunolocalization of glutaryl-CoA dehydrogenase (GCDH) in adult and embryonic rat brain and peripheral tissues.
    Braissant O; Jafari P; Remacle N; Cudré-Cung HP; Do Vale Pereira S; Ballhausen D
    Neuroscience; 2017 Feb; 343():355-363. PubMed ID: 27984186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Elevated glutaric acid levels in Dhtkd1-/Gcdh- double knockout mice challenge our current understanding of lysine metabolism.
    Biagosch C; Ediga RD; Hensler SV; Faerberboeck M; Kuehn R; Wurst W; Meitinger T; Kölker S; Sauer S; Prokisch H
    Biochim Biophys Acta Mol Basis Dis; 2017 Sep; 1863(9):2220-2228. PubMed ID: 28545977
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The first knock-in rat model for glutaric aciduria type I allows further insights into pathophysiology in brain and periphery.
    Gonzalez Melo M; Remacle N; Cudré-Cung HP; Roux C; Poms M; Cudalbu C; Barroso M; Gersting SW; Feichtinger RG; Mayr JA; Costanzo M; Caterino M; Ruoppolo M; Rüfenacht V; Häberle J; Braissant O; Ballhausen D
    Mol Genet Metab; 2021 Jun; 133(2):157-181. PubMed ID: 33965309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disruption of brain redox homeostasis in glutaryl-CoA dehydrogenase deficient mice treated with high dietary lysine supplementation.
    Seminotti B; Amaral AU; da Rosa MS; Fernandes CG; Leipnitz G; Olivera-Bravo S; Barbeito L; Ribeiro CA; de Souza DO; Woontner M; Goodman SI; Koeller DM; Wajner M
    Mol Genet Metab; 2013 Jan; 108(1):30-9. PubMed ID: 23218171
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Long Lasting High Lysine Diet Aggravates White Matter Injury in Glutaryl-CoA Dehydrogenase Deficient (Gcdh-/-) Mice.
    Olivera-Bravo S; Seminotti B; Isasi E; Ribeiro CA; Leipnitz G; Woontner M; Goodman SI; Souza D; Barbeito L; Wajner M
    Mol Neurobiol; 2019 Jan; 56(1):648-657. PubMed ID: 29779173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Striatal neuronal death mediated by astrocytes from the Gcdh-/- mouse model of glutaric acidemia type I.
    Olivera-Bravo S; Ribeiro CA; Isasi E; Trías E; Leipnitz G; Díaz-Amarilla P; Woontner M; Beck C; Goodman SI; Souza D; Wajner M; Barbeito L
    Hum Mol Genet; 2015 Aug; 24(16):4504-15. PubMed ID: 25968119
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acute renal proximal tubule alterations during induced metabolic crises in a mouse model of glutaric aciduria type 1.
    Thies B; Meyer-Schwesinger C; Lamp J; Schweizer M; Koeller DM; Ullrich K; Braulke T; Mühlhausen C
    Biochim Biophys Acta; 2013 Oct; 1832(10):1463-72. PubMed ID: 23623985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Marked reduction of Na(+), K(+)-ATPase and creatine kinase activities induced by acute lysine administration in glutaryl-CoA dehydrogenase deficient mice.
    Amaral AU; Cecatto C; Seminotti B; Zanatta Â; Fernandes CG; Busanello EN; Braga LM; Ribeiro CA; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M
    Mol Genet Metab; 2012 Sep; 107(1-2):81-6. PubMed ID: 22578804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disturbance of the glutamatergic system by glutaric acid in striatum and cerebral cortex of glutaryl-CoA dehydrogenase-deficient knockout mice: possible implications for the neuropathology of glutaric acidemia type I.
    Busanello EN; Fernandes CG; Martell RV; Lobato VG; Goodman S; Woontner M; de Souza DO; Wajner M
    J Neurol Sci; 2014 Nov; 346(1-2):260-7. PubMed ID: 25241940
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impairment of GABAergic system contributes to epileptogenesis in glutaric acidemia type I.
    Vendramin Pasquetti M; Meier L; Loureiro S; Ganzella M; Junges B; Barbieri Caus L; Umpierrez Amaral A; Koeller DM; Goodman S; Woontner M; Gomes de Souza DO; Wajner M; Calcagnotto ME
    Epilepsia; 2017 Oct; 58(10):1771-1781. PubMed ID: 28762469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential complementation effects of two disease-associated mutations in tetrameric glutaryl-CoA dehydrogenase is due to inter subunit stability-activity counterbalance.
    Ribeiro JV; Lucas TG; Bross P; Gomes CM; Henriques BJ
    Biochim Biophys Acta Proteins Proteom; 2020 Jan; 1868(1):140269. PubMed ID: 31491587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling Glutaric Aciduria Type I in human neuroblastoma cells recapitulates neuronal damage that can be rescued by gene replacement.
    Mateu-Bosch A; Segur-Bailach E; García-Villoria J; Gea-Sorlí S; Ruiz I; Del Rey J; Camps J; Guitart-Mampel M; Garrabou G; Tort F; Ribes A; Fillat C
    Gene Ther; 2024 Jan; 31(1-2):12-18. PubMed ID: 37985879
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multifactorial modulation of susceptibility to l-lysine in an animal model of glutaric aciduria type I.
    Sauer SW; Opp S; Komatsuzaki S; Blank AE; Mittelbronn M; Burgard P; Koeller DM; Okun JG; Kölker S
    Biochim Biophys Acta; 2015 May; 1852(5):768-77. PubMed ID: 25558815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of targeted suppression of glutaryl-CoA dehydrogenase by lentivirus-mediated shRNA and excessive intake of lysine on apoptosis in rat striatal neurons.
    Gao J; Zhang C; Fu X; Yi Q; Tian F; Ning Q; Luo X
    PLoS One; 2013; 8(5):e63084. PubMed ID: 23658800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of oxidative stress in brain of glutaryl-CoA dehydrogenase deficient mice by acute lysine administration.
    Seminotti B; da Rosa MS; Fernandes CG; Amaral AU; Braga LM; Leipnitz G; de Souza DO; Woontner M; Koeller DM; Goodman S; Wajner M
    Mol Genet Metab; 2012 May; 106(1):31-8. PubMed ID: 22445450
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biochemistry and bioenergetics of glutaryl-CoA dehydrogenase deficiency.
    Sauer SW
    J Inherit Metab Dis; 2007 Oct; 30(5):673-80. PubMed ID: 17879145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interaction of glutaric aciduria type 1-related glutaryl-CoA dehydrogenase with mitochondrial matrix proteins.
    Schmiesing J; Schlüter H; Ullrich K; Braulke T; Mühlhausen C
    PLoS One; 2014; 9(2):e87715. PubMed ID: 24498361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Experimental evidence that bioenergetics disruption is not mainly involved in the brain injury of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Amaral AU; Cecatto C; Seminotti B; Ribeiro CA; Lagranha VL; Pereira CC; de Oliveira FH; de Souza DG; Goodman S; Woontner M; Wajner M
    Brain Res; 2015 Sep; 1620():116-29. PubMed ID: 25998543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. l-Carnitine prevents oxidative stress in striatum of glutaryl-CoA dehydrogenase deficient mice submitted to lysine overload.
    Guerreiro G; Amaral AU; Ribeiro RT; Faverzani J; Groehs AC; Sitta A; Deon M; Wajner M; Vargas CR
    Biochim Biophys Acta Mol Basis Dis; 2019 Sep; 1865(9):2420-2427. PubMed ID: 31181292
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Disease-causing missense mutations affect enzymatic activity, stability and oligomerization of glutaryl-CoA dehydrogenase (GCDH).
    Keyser B; Mühlhausen C; Dickmanns A; Christensen E; Muschol N; Ullrich K; Braulke T
    Hum Mol Genet; 2008 Dec; 17(24):3854-63. PubMed ID: 18775954
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.